Computer Networks Physical Layer - Technologies

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
 oliver.hahm@fb2.fra-uas.de
 https://teaching.dahahm.de

November 04, 2022

Recap: Physical Layer

Transmits the ones and zeros

- Physical connection to the network
- Conversion of data into signals
- Protocol and transmission medium specify among others:
 - The data encoding on the transmission medium
 - The directional dependence of data transmission
 - The mechanical and electronic aspects (e.g., access point plug design, pin usage)

Hybrid Reference Model

Application Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

Agenda

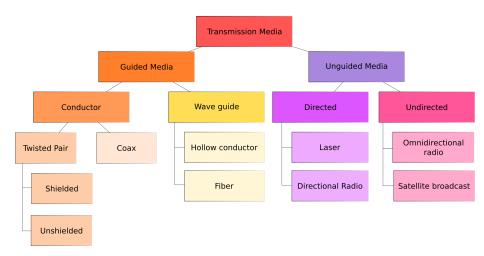
Transmission Media

- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile

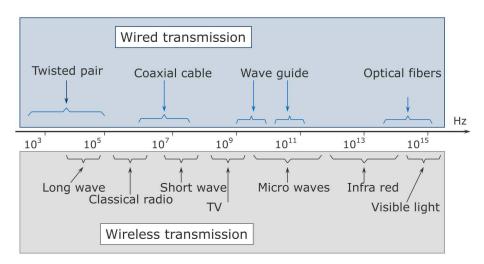
Technologies

- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

Agenda


Transmission Media

- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile


Technologies

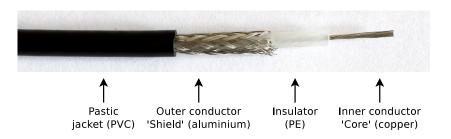
- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

Classification of Transmission Media

Electromagnetic Spectrum

Agenda

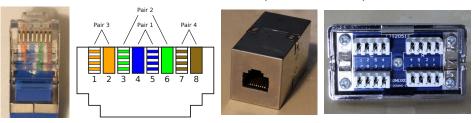
Transmission Media


Guided Transmission Media

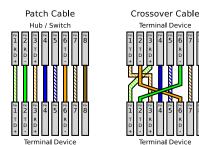
- Unguided Transmission Media
- The Last Mile

Technologies

- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth


Coaxial Cables (Coax Cables)

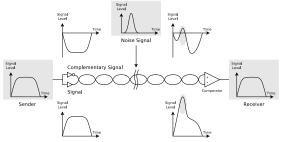
- Bipolar cable with concentric (coaxial) structure
- The inner conductor (core) carries the electrical signals
- The outer conductor (shield) is kept at ground potential and completely surrounds the inner conductor
 - The shielding of the signal-carrying conductor by the outer conductor that is kept at ground potential, reduces electromagnetic interferences


Twisted Pair Cables

- The wires of twisted-pair cables are pairwise twisted with each other.
- Twisted pairs are better protected against alternating magnetic fields and electrostatic interferences from the outside than parallel signal wires
- All variants of the Ethernet standard, that use twisted pair cables as transmission medium, use plugs and jacks according to the standard 8P8C, which are usually called RJ45 (Registered Jack)

Crossover Cables and Patch Cables

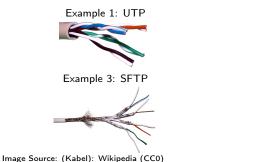
- A Crossover cable can connect 2 terminal devices directly
 - It connects the send and receive lines of both devices
- To connect more than just 2 network devices, patch cables are used
 - In this case, a hub or a switch is required

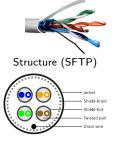


- Some hubs and switches provide an uplink port for connecting another hub or switch
 - The uplink port is internally crossed
- Most modern network devices support Auto-MDIX which allows to automatically detect the send and receive wires of connected network devices

Complementary Signal

Source: Jörg Rech. Ethernet. Heise. 2008 and Wikipedia


- Via the wire pair a complementary signal is sent (on one wire 0 V to +2.8 V and on the other wire 0 V to -2.8 V)
 - This allows the receiver to filter out interfering signals
 - Furthermore, it reduces electromagnetic emission


- The signal level of line A=Payload Signal+Noise
- The signal level of line
 B= -Payload Signal+Noise
- The difference of the signal levels of line A and line B at receiver side is: [+Payload Signal+Noise] - [-Payload Signal+Noise] = 2*Payload Signal
- Result: Regardless of the level of the noise signal, the difference between the payload signal and the complementary signal remains the same

Shielding of different Twisted Pair Cables

- Twisted pair cables are often equipped with a metal shield to prevent electromagnetic interferences
- The pairs or the entire cable can be shielded (braided or foil)
- Shielding can only be used if both sides of the cable have the same ground potential

Example 2: FUTP = FTP

Categories of Twisted Pair Cables

- Different categories of twisted pair cables exist
- The performance of a network connection is determined by the component of the lowest category
 - Category 1/2/3/4 are only used for telephone cables today
 - Category 5/5e are common in most current LANs ¹
 - Category 6/6A are compatible with up to 10 Gbps over 100 m
 - Category 7/7A do not offer benefits over Cat-6A cables
 - Category 8 are designed for data centers and support to \approx 30 m length

Main differences (of the structure) between the categories: number of twists per wire length (cm) and thickness of the jacket

- More twists per cm \implies less interference (noise)
- Cat 5/5e has 1-2 twists per cm. Cat 6 has 2 or more twists per cm
- Thickness of the cladding \implies less crosstalk
- Crosstalk is the mutual interference of parallel lines

¹Cat5e is guaranteed Gigabit Ethernet-compatible

Prof. Dr. Oliver Hahm - Computer Networks - Physical Layer - Technologies - WS 22/23

Information printed on Twisted Pair Cables (1/2)

Do you understand the most important cable characteristics that are printed on twisted pair cables?

Example: E188601 (UL) TYPE CM 75°C LL84201 CSA TYPE CMG FT4 CAT.5E PATCH CABLE TO TIA/EIA 568A STP 26AWG STRANDED

Information printed on Twisted Pair Cables (1/2)

Do you understand the most important cable characteristics that are printed on twisted pair cables?

Example: E188601 (UL) TYPE CM 75°C LL84201 CSA TYPE CMG FT4 CAT.5E PATCH CABLE TO TIA/EIA 568A STP 26AWG STRANDED

- PATCH/CROSS/CROSSOVER: see slide 10
- UTP/STP/FTP/SFTP: see slide 12
- CAT5/5E/6/7/8: see slide 13
- 24AWG/26AWG/28AWG: American wire gauge (AWG) informs about the diameters of the wires
 - 24AWG = 0.51054 mm, 26AWG = 0.405 mm, 28AWG = 0.321 mm
 - Larger wire diameter \implies less electrical resistance for the electronic signals \implies lower attenuation
 - Thinner cables block airflow in server racks less and simplify the installation

Information printed on Twisted Pair Cables (2/2)

Do you understand the most important cable characteristics that are printed on twisted pair cables?

Example: E188601 (UL) TYPE CM 75°C LL84201 CSA TYPE CMG FT4 CAT.5E PATCH CABLE TO TIA/EIA 568A STP 26AWG STRANDED

- 60°C/75°C: Temperature information stands for flame tests
- SOLID/STRANDED
 - Solid cables use solid copper wires. Such cables are well suited for permanent infrastructure installation. They have a lower attenuation and cost less compared to stranded cables
 - Stranded cables consist of multiple strands of wires wrapped around each other. They are typically used to create patch cables because they are very flexible. Attenuation of stranded cables is higher compared to solid cables. Thus, they are used for shorter distances.

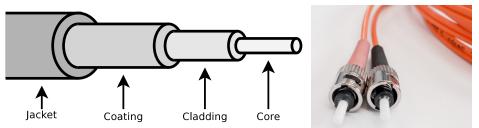
Stranded cable

Solid cable

Fiber-optic Cables

Often called optical fiber

- Transfer data by using light
 - Light source: Normal LED or laser LED
 - Use wavelengths of 850, 1300 or 1550 nm
 - Propagation speed of the light in the glass: about 200,000 km/s
- Advantages over coaxial and twisted pair cables
 - Provide high data rates over large distances
 - Create no electromagnetic emission
 - Insensitive against electromagnetic influences
 - Drawbacks:
 - Higher cost for cabling and active components (LEDs)
 - Existing twisted pair cable infrastructures can not be used
 - Used only when copper cables cannot provide enough bandwidth



Structure of Fiber-optic Cables

Image Source (cable): pxhere.com (CC0)

- Components of an optical fiber (from inside to outside):
 - **1** Light-transmitting (core) made of quartz glass
 - 2 The core is surrounded by a cladding layer
 - The refractive index of the core must be greater than that of the cladding to enclose the optical signal
 - 3 The core is surrounded by a coating layer that protects it from moisture and physical damage
 - 4 The final layer is the outer jacket to protect the inner layers

.

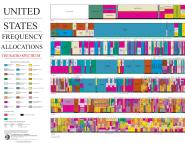
Multi-mode Fibers and Mono-mode (Single-mode) Fibers

- Structure, dimensions and refractive index of core and cladding specify the number of propagation modes, by which light can propagate along the fiber
 - Each mode corresponds to one path in the optical fiber

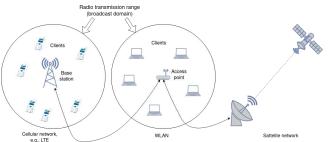
		nao to ono puti
Input pulse		Output pulse
\bigwedge	Step-index Multi-mode Fiber	
\int	Graded-index Multi-mode Fiber	
\bigwedge	Mono-mode (Single-mode) Fiber	\bigwedge

- Multi-mode Fibers provide up to several thousand propagation modes and mono-mode (single-mode) fibers only a single one
 - Short distance (≈< 500 m) ⇒ multi-mode fibers
 - Long distance (≈< 70 km) ⇒ mono-mode fibers

Agenda


Transmission Media

- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile

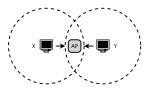

Technologies

- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

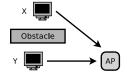
Wireless Communication

- Medium is an electromagnetic wave
- Data is modulated
- The range depends on signal power and environment
- Can be directed or undirected

Challenges of Wireless Networks (1/2)


Fading over distance (decreasing signal strength)

 Electromagnetic waves are gradually weakened by physical barriers (e.g., walls) and in free space


Source: Computernetzwerke, James F. Kurose, Keith W. Ross, Pearson (2008)

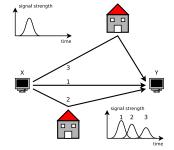
Challenges of Wireless Networks (1/2)

- Fading over distance (decreasing signal strength)
 - Electromagnetic waves are gradually weakened by physical barriers (e.g., walls) and in free space

- 2 Hidden terminal problem (invisible or hidden terminal devices)
 - Terminal devices, communicating with the same device (e.g., an access point), do not recognize each other and therefore interfere with each other

Source: Computernetzwerke, James F. Kurose, Keith W. Ross, Pearson (2008)

Challenges of Wireless Networks (2/2)


3 Multipath propagation

- Electromagnetic waves are reflected and therefore go paths of different lengths from the sender to the destination
 - Result: A difficult to interpret signal arrives at the receiver because the reflections influence subsequent transmissions
- Similar problem: If objects move between sender and receiver, the propagation paths may change

4 External Interference

- Examples: WLAN and Bluetooth operate in the same spectrum
- Also electromagnetic noise, caused by motors or microwave ovens can cause interferences

Source: Computernetzwerke, James F. Kurose, Keith W. Ross, Pearson (2008)

Agenda

Transmission Media

- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile

Technologies

- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

How can we connect a plethora of users to the Internet in a cost-efficient manner?

Most common solutions

How can we connect a plethora of users to the Internet in a cost-efficient manner?

Most common solutions

DSL Access through phone lines

How can we connect a plethora of users to the Internet in a cost-efficient manner?

Most common solutions

DSL Access through phone lines Cable Access through television broadcast system

How can we connect a plethora of users to the Internet in a cost-efficient manner?

Most common solutions

DSL Access through phone lines Cable Access through television broadcast system 3G/4G Access through deployed cellular networks

How can we connect a plethora of users to the Internet in a cost-efficient manner?

Most common solutions

DSL Access through phone lines Cable Access through television broadcast system 3G/4G Access through deployed cellular networks

Other solutions

Powerline Access through AC infrastructure

How can we connect a plethora of users to the Internet in a cost-efficient manner?

Most common solutions

DSL Access through phone lines Cable Access through television broadcast system 3G/4G Access through deployed cellular networks

Other solutions

Powerline Access through AC infrastructure Satellite E.g., using television satellites

How can we connect a plethora of users to the Internet in a cost-efficient manner?

Most common solutions

DSL Access through phone lines Cable Access through television broadcast system 3G/4G Access through deployed cellular networks

Other solutions

Powerline Access through AC infrastructure Satellite E.g., using television satellites Wireless E.g., WiMAX, directed WIFI

How can we connect a plethora of users to the Internet in a cost-efficient manner?

Most common solutions

DSL Access through phone lines Cable Access through television broadcast system 3G/4G Access through deployed cellular networks

Other solutions

Powerline Access through AC infrastructure Satellite E.g., using television satellites Wireless E.g., WiMAX, directed WIFI Fiber Requires infrastructure expansion

History: The Classical Modem

- A modem modulates/demodulates digital data over an analog medium
- The telephone system transmit the data the same way as normal audio signals (i.e., phone calls)
- The modem takes care of the signaling information
- High error rate
- Speed: up to 56 kpbs

Digital Subscriber Line

- Use the whole spectrum of the copper cable
- Downstream modulation via DSL modem, upstream modulation via DSL Access Multiplexer (DSLAM)
- Modulation with Discrete Multi-tone Modulation (DMT) or Carrierless Amplitude Phase Modulation (CAP)
- Data rate depends on distance to the switching center and the cable quality
- The VDSL2 (Very high bit rate digital subscriber line 2) standard allows up to 100 Mbps at 500 m (using frequencies up to 30 MHz)²

Source: Wikipedia, CC 2.0

²ITU recommendation G.993.2, publisehd in 2006

Data Over Cable Service Interface Specification (DOCSIS)

- Reusing the cable television infrastructure (using coaxial cables)
- Downstream modulation via cable modem, upstream modulation via Cable Modem Termination System (CMTS)
- Channels from low-end radio spectrum (6–8 MHz)
- Downstream up to 160 Mbps, upstream up to 20 Mbps
 - Modern architectures allow for higher data rate because of hybrid fiber/coaxial (HFC) architecture
- Shared medium
- Ratified as ITU-T recommendation

Source: Wikipedia, CC 3.0

Standardization body: 3GPP (3rd Generation Partnership Project)

Standardization body: 3GPP (3rd Generation Partnership Project)

2G: GPRS (General Packet Radio Service) \rightarrow Up to 114 kbps

Standardization body: 3GPP (3rd Generation Partnership Project)

2G: GPRS (General Packet Radio Service) \rightarrow Up to 114 kbps 3G: UMTS (Universal Mobile Telecommunications System) \rightarrow Up to 42 Mbps

- Standardization body: 3GPP (3rd Generation Partnership Project)
 - 2G: GPRS (General Packet Radio Service) → Up to 114 kbps
 3G: UMTS (Universal Mobile Telecommunications System) → Up to 42 Mbps
 4G: LTE (Long Term Evolution) → Up to 168 Mbps

- Standardization body: 3GPP (3rd Generation Partnership Project)
 - 2G: GPRS (General Packet Radio Service) → Up to 114 kbps
 3G: UMTS (Universal Mobile Telecommunications System) → Up to 42 Mbps
 4G: LTE (Long Term Evolution)
 - ightarrow Up to 168 Mbps
 - 5G: up to 10 Gbps with a focus on IoT and M2M applications

Agenda

Transmission Media

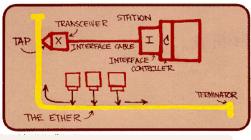
- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile

Technologies

- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

Agenda

Transmission Media


- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile

| Technologies

Ethernet

- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

Ethernet (IEEE 802.3)

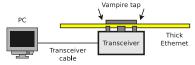
With this drawing Robert Metcalfe demonstrated in June

1976 the working principle of Ethernet on the National

Computer Conference

On + Link Blakking = Receive Home / Usink T 8

Prof. Dr. Oliver Hahm - Computer Networks - Physical Layer - Technologies - WS 22/23


The Evolution of Ethernet

- From 1973 Ethernet was developed at the Xerox PARC (Palo Alto Research Center) by Robert Metcalfe and others
 - The data rate was 2.94 Mbps
 - The transmission medium was a coaxial cable
- In 1983 IEEE published the specification for 10BASE5 ³ as a draft (the standard followed in 1985): IEEE 802.3
 - The data rate was 10 Mbps
- In 1988 AT&T released StarLAN 10 which became the basis for 10BASE-T
 - The transmission medium were twisted-pair cables
- Since the 1990 Ethernet has become the most frequently used (wired) LAN technology

³Also called thick Ethernet

Coaxial Cable for 10BASE5 – Thick Ethernet

- 10BASE5 (Yellow Cable or Thick Ethernet)
- 10 mm thick coaxial cable (RG-8) with 50 ohm impedance
- For connecting terminal devices, a hole must be drilled into the cable through the outer shielding to contact the inner conductor
- Through the hole, the transceiver is connected via a vampire tap with the inner conductor
- The terminal device is connected via a transceiver cable, called AUI (Attachment Unit Interface) with the transceiver

Coaxial Cable for 10BASE2 – Thin Ethernet

- The hardware required for Thick Ethernet is cost intensive
- A less expensive solution is 10BASE2
 - It is called Thin Ethernet, ThinWire and sometimes Cheapernet
- 6 mm thick coaxial cable (RG-58) with 50 ohm impedance
 - The cables are thinner and more flexible, and therefore more simple to install
- Cables and devices have BNC connectors (Bayonet Neill Concelman)
- T-Connectors are used to connect devices with the transmission medium
- Terminators (50 ohm) are used to prevent reflections

Characteristics of Ethernet

- The Ethernet standards provide services on the Physical Layer and the Data Link Layer
- Several Ethernet standards exist, e.g., 10BASE5, 10BASE2, 100BASE-TX, 1000BASE-LX, 1000BASE-TX, 40GBASE-T
- They differ among others in ...
 - the maximum data rate,
 - the transmission medium used, and
 - the maximum segment length
- The connection type to the medium is passive, i.e., devices are only active when they send data
- Broadband variants of Ethernet exist, but were no economic success

Transmission Media

- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile

Technologies

- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

Token Ring (IEEE 802.5)

Source: Wikipedia, Ian Wilson, CC 3.0

Source: Wikipedia, public domain

The evolution of Token Ring

- 1981: Developed by the English company Procom
- From the mid-1980s: Further development by IBM
 - 1985: Introduced with 4 Mbps for the original IBM PC
 - 1989: 16 Mbps
 - 1998: 100 Mbps
- Until the mid-1990s: IBM's preferred networking technology
 - Obsolete, since IBM stopped the marketing and distribution in 2004
- BM "Type-1", a heavy two-pair 150 Ohm shielded twisted pair cable

Source: Scott Adams (http://dilbert.com)

Operating principle of Token Ring

- A token circles in the ring
- Terminal devices are logically connected as a ring
- If a terminal device wants to send data, it waits for the token frame
 - Then, the terminal device appends its payload at the token
 - It adds the required control signals to the token
 - It sets the token bit from value 0 (free token) to 1 (data frame)
- If a data frame token reaches its destination, the receiver copies the payload data and acknowledges the receive
- Physically a Token Ring network is wired as a star topology with Media Access Units in the center
- The connection type to the medium is active, i.e., the network stations participate actively in the token passing
- Compared to Ethernet Token Ring is more deterministic and support access priorities, but is more complex and more expensive

Agenda

Transmission Media

- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile

Technologies

- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

WLAN (IEEE 802.11)

- The most frequently used wireless LAN technology
- Wi-Fi is a marketing brand
- Current specifications allow up to 7 Gbps
- Multiple communication models:

Infrastructure mode Clients connect to an Access Point (AP) Ad-hoc mode Clients can form a mesh network

Source: Scott Adams (http://dilbert.com)

The Evolution of WLAN standards

- In 1985 the US FCC (Federal Communications Commission) released the ISM radio bands for industrial, scientific, and medical purposes, including a frequency range at 2.4 GHz
- In 1997 the IEEE released the first standard as 802.11
- 1999 IEEE 802.11b followed with a data rate up to 11 Mbps
- Later amendments like 802.11a or 802.11n make use of the 5 GHz spectrum

IEEE	Maximum (gross)		Realistic (net)	
Standard	Data Rate		Data Rate	
802.11	2	Mbps	1	Mbps
802.11a	54	Mbps	20-22	Mbps
802.11b	11	Mbps	5-6	Mbps
802.11g	54	Mbps	20-22	Mbps
802.11n	600	Mbps	200-250	Mbps
802.11ac	1.733	Mbps	800-850	Mbps

Transmission Power of WLAN

Image Source: Google Image Search

- WLAN is designed for use inside buildings
 - For this reason, it transmits with a relative low transmission power (up to 100 mW at 2.4 GHz and 1 W at 5 GHz)
 - Such transmission power levels are considered safe for health
 - For comparison, the transmission power of GSM phones, that operate in the frequency range 880-960 MHz, is about 2 W
 - Some WLAN devices for 2.4 GHz provide a higher transmission power
 - Operating such devices is illegal in many countries => slide 44

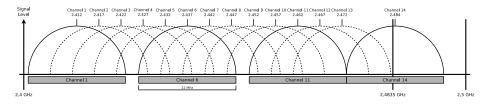
Technologies ○○○○○○○○○○○○○○○○○○○○○○○○○○○

Measuring Vehicle of the Federal Network Agency

Seen in Ludwigshafen-Oggersheim (November 26th, 2018)

Prof. Dr. Oliver Hahm – Computer Networks – Physical Layer - Technologies – WS 22/23

WLAN Standards, Frequencies and Channels


- Most WLAN standards use the frequency blocks 2.4000-2.4835 GHz and 5.150-5.725 GHz in the microwave range
 - The standards differ among others in the frequency blocks used, data rates and modulation methods, as well as the resulting channel width

IEEE	Standard	Frequencies	
Standard	since	2.4 GHz	5 GHz
802.11	1997	Х	
802.11a	1999		Х
802.11b	1999	Х	
802.11g	2003	Х	
802.11n	2009	Х	Х
802.11ac	2013		Х

Despite the fact that WLAN is used worldwide, legal differences exist

Example: In Germany, using $5.15-5.35 \, \text{GHz}$ is only allowed in enclosed rooms with $200 \, \text{mW}$ maximum transmission power

Non-overlapping Channels of IEEE 802.11b

- IEEE 802.11b uses the Direct Sequence Spread Spectrum (DSSS) modulation scheme with 22 MHz wide channels and 5 MHz channel spacing
 - Thus, only 3 (EU and U.S.) or 4 (Japan) channels exist, whose signals (in theory) do not overlap
 - Channel 1, 6, 11 and 14 (only in Japan)
- Good channel assignment is crucial in dense networks (e.g., hotels, conference centers, apartment buildings)

IEEE 802.11n – Multiple Input Multiple Output (MIMO)

- MIMO uses up to four antennas
- These can be used in different frequency blocks in 2.4 GHz and 5 GHz in parallel
- In 802.11n MIMO increases the gross data rate to up to 600 Mbps
- With each parallel data stream (antenna), a maximum data rate (gross) of 150 Mbps can be achieved and up to 4 data streams can be bundled

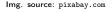


Image source: Christian Baun

WLAN Security

- 802.11 implements the security standard Wired Equivalent Privacy (WEP)
 - Based on the RC4 algorithm
 - Works with static keys that have a length of 40-bit or 104-bit
 - The mechanism can be cracked in reasonable time because of the predictable

protocol headers

More modern security standards are Wi-Fi Protected Access (WPA)

- 1/2/3
 - Original WPA is based on the RC4 algorithm, WPA2 uses the Advanced Encryption Standard (AES)
 - Works with dynamic keys (based on Temporal Key Integrity Protocol (TKIP) or encrypting each data packet with a different key)
 - WPA2 includes the more secure encryption protocol Counter-Mode/CBC-Mac Protocol (CCMP)
 - WPA3 replaces the Pre-shared key (PSK) exchange with Simultaneous Authentication of Equals (SAE)
 - WPA2 encryption with a sufficiently long password is still considered secure, WPA1 not
 - Instead of PSK a RADIUS authentication server (WPA-Enterprise) or Wi-Fi

Protected Setup (WPS) can be used for key distribution

Agenda

Transmission Media

- Guided Transmission Media
- Unguided Transmission Media
- The Last Mile

Technologies

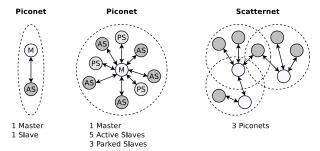
- Ethernet
- Token Ring
- Wireless Local Area Network (WLAN)
- Bluetooth

Bluetooth

- Wireless network system for short distance data transmission → BANs
 - It is designed to replace short cable connections between different devices
- Development was initiated by the Swedish company Ericsson in 1994
 - Further development is done by the Bluetooth SIG (Special Interest Group)

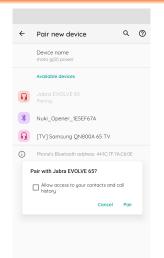
Bluetooth is named after the Danish Viking King Harald Bluetooth

He was famous among other things for his communication skills


- Bluetooth devices use the frequency block 2.402-2.480 GHz
- Frequency hopping is used to avoid interference with, for instance, WLAN

Network Topologies of Bluetooth (1/2)

- Bluetooth devices organize themselves in so-called piconets
 - A piconet consists of up to 255 nodes
 - One active node is the master, the others are slaves
 - The master can change the status of the other nodes (activate/deactivate)
- Each Bluetooth device can be registered in multiple piconets
- If a node in range of 2 piconets, it can combine them to a Scatternet



The Evolution of Bluetooth

- Development started in 1989 at Ericsson for wireless headsets
- The first consumer device (a headset) was launched in 1999
- Initial data rate is some hundred kbps
- Version 2.0 introduces Enhanced Data Rate (EDR) and allows for up to 2.1 Mbps
- In 2010 Bluetooth 4.0 was published and introduced Bluetooth Low Energy (BLE)
- RFC 7668 is published in 2015 and specifies IPv6 over BLE
- Bluetooth 5.0 was released in 2016 and is targeted to support lo⊤ use cases
- The current data rate allows for up to 50 Mbps

Pairing of Bluetooth Devices

- The initial key exchange between two Bluetooth devices is called pairing
- Older Bluetooth versions (before 2.1) required to enter a PIN as a PSK
- Bluetooth 2.1 introduced Secure Simple Pairing
 - The Diffie-hellman algorithm is used for key exchange
 - The capabilities of the device determine the security mechanism to be used
- The bonding process allows to establish a longterm trust relationship between two devices

You should now be able to answer the following questions:

- What are common transmission media and what are their most important properties?
- Which challenges arise particularly in wireless networks?
- How can existing infrastructure be used to bridge the last mile?
- Which common technologies are used on the physical layer?

