Exercise Sheet 5

Exercise 1 (IPv4 Addressing in the Network Layer)

Calculate for each subtask of this exercise the **first and last host addresses**, the **network address** and the **broadcast address** of the subnet.

IP Address: Subnet mask: Network address? First host address? Last host address? Broadcast address?	151.175.31.100 255.255.254.0 	10010111.10101111.00011111.01100100 1111111.1111111.1111110.00000000
IP Address: Subnet mask: Network address? First host address? Last host address? Broadcast address?	151.175.31.100 255.255.255.240 	10010111.10101111.00011111.01100100 11111111
IP Address: Subnet mask: Network address? First host address? Last host address? Broadcast address?	151.175.31.100 255.255.255.128 	10010111.10101111.00011111.01100100 11111111

Exercise 2 (Inter-Networking)

1. Calculate for the **subnet ID of sender and receiver** and specify whether the IP packet **leaves the subnet during transmission** or not for the following two examples.

<pre>a) Sender:</pre>	11001001.00010100.11011110.00001101	201.20.222.13
Subnet mask:	1111111.1111111.1111111.11110000	255.255.255.240
Receiver:	11001001.00010100.11011110.00010001	201.20.222.17
Subnet mask:	11111111	255.255.255.240

- Subnet ID of sender?
- Subnet ID of receiver?
- Does the IP packet leave the subnet [yes/no]?

<pre>b) Sender:</pre>	00001111.11001000.01100011.00010111	15.200.99.23
Subnet mask:	1111111.11000000.0000000.00000000	255.192.0.0
Receiver:	00001111.11101111.00000001.00000001	15.239.1.1
Subnet mask:	11111111	255.192.0.0

- Subnet ID of sender?
- Subnet ID of receiver?
- Does the IP packet leave the subnet [yes/no]?
- 2. The forwarding table of a computer (Windows or Unix) can be queried with the command netstat -rn. An exemplary output may look like this:

Kernel IP routing table

Destination	Gateway	Genmask	Flags	MSS	Window	irtt	Iface
0.0.0.0	10.2.0.1	0.0.0	UG	0	0	0	eth0
10.2.0.0	0.0.0.0	255.255.255.0	U	0	0	0	eth1
10.204.0.0	0.0.0.0	255.252.0.0	U	0	0	0	wlan0
10.200.0.0	0.0.0.0	255.248.0.0	U	0	0	0	eth2
172.17.8.15	0.0.0.0	255.255.255.255	UH	0	0	0	eth2
192.168.23.0	0.0.0.0	255.255.255.0	U	0	0	0	wlan1
192.168.42.0	0.0.0.0	255.255.255.240	U	0	0	0	eth3

Specify the particular interface the kernel will choose for each destinations with following IPv4 addresses and explain why:

- a) 192.168.23.14
- b) 192.168.42.17
- c) 192.168.42.15
- d) 10.2.0.255
- e) 10.207.51.4
- f) 172.17.8.18
- g) 172.17.8.15
- h) 10.202.4.3
- i) 10.216.168.23

Exercise 3 (Subnetting)

Calculate for each subtask of this exercise the **subnet masks** and answer the **questions**.

1. Split the class C network 195.1.31.0 for implementing 30 subnets.

```
Network ID:
            11000011.00000001.00011111.00000000 195.1.31.0
Number of bits for subnet IDs?
Subnet mask: _____.
                       ----··
                                               ____·__.
Number of bits for host IDs?
Number of host IDs per subnet?
  2. Split the class A network 15.0.0.0 for implementing 333 subnets.
             00001111.0000000.0000000.00000000 15.0.0.0
Network ID:
Number of bits for subnet IDs?
Subnet mask: _____.
                                               ____·___·___·
Number of bits for host IDs?
Number of host IDs per subnet?
  3. Split the class B network 189.23.0.0 for implementing 20 subnets.
Network ID: 10111101.00010111.00000000.00000000
                                              189.23.0.0
Number of bits for subnet IDs?
Subnet mask: _____.
                                               ____·
Number of bits for host IDs?
Number of host IDs per subnet?
  4. Split the class C network 195.3.128.0 into subnets, which contain 17 hosts
    each.
Network ID: 11000011.00000011.10000000.00000000 195.3.128.0
Number of bits for host IDs?
Number of bits for subnet IDs?
Number of possible subnets?
Subnet mask:
             5. Split the class B network 129.15.0.0 into subnets, which contain 10 hosts
    each.
Network ID:
           10000001.00001111.00000000.00000000 129.15.0.0
Number of bits for host IDs?
Number of bits for subnet IDs?
Number of possible subnets?
Subnet mask:
             -----·
```

Exercise 4 (Checksums in IP Packets)

The figure shows the structure of IPv4 packets as discussed in the computer networks course.

32 bits (4 bytes)					
Version	IHL	Differentiated services	Total length		
	Identif	ication	Flags Fragment offse		
Time T	o Live	Protocol ID	Header checksum		
	Source Address				
	Destination Address				
Options / Padding					
Payload					

The given data in hexadecimal notation is a truncated excerpt of an IP packet:

4500 0034 B612 4000 4006 6F80 0A00 008B 5BC6 AEE0

The data contains the values of the fields of the IP packet header.

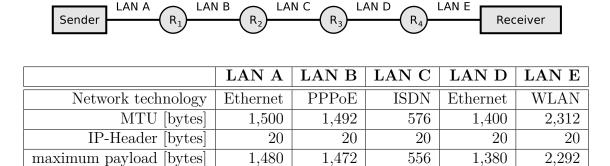
4	= Version
5	$=$ IHL $=$ IP Header Length ($\implies 5 * 4$ Byte words $= 20$ bytes)
00	= Differentiated services
0034	$=$ Total length (\implies 52 bytes)
B612	= Identification
4000	= Flags + Fragment offset
40	$=$ Time To live (\implies 62 hops)
06	$=$ Protocol ID (\Longrightarrow TCP)
6F80	= Header Checksum
0A00	008B = IP address (sender)
5BC6	AEE0 = IP address (destination)

1. Calculate the checksum for each IP header:

- 4500 0034 4C22 4000 F706 ???? C163 9055 0A00 008B
- 4500 0034 671E 4000 4006 ???? 0A00 008b C163 9055
- 4500 00F2 0000 4000 4011 ???? 0A00 008b 0A00 00FF
- 2. Verify the checksum of each IP header:
 - 4500 0034 02FD 4000 3606 276C 6CA0 A330 0A00 008B
 - 4500 00E7 02FC 4000 3606 37BC 6CA0 A330 0A00 008B
 - 4500 0034 A9D5 4000 4006 814E 0A00 008B adC2 4613

(Address Types and Spaces) Exercise 5

- 1. Name the three private IPv4 address spaces.
- 2. What is the prefix for a link-local address in IPv4 and IPv6 networks?
- 3. Which of the following IPv4 addresses are multicast addresses?
 - \Box 222.1.2.3
 - \Box 224.1.2.3
 - \Box 242.0.0.0
 - \Box 234.23.23.23
- 4. How can an IPv6 anycast address be distinguished from a unicast or a multicast address?
- 5. Which IPv6 address can you use in order to *ping* all stations in a local network?
- 6. What type of address is given with fd04:2342:0815:1:6770:37ca:7a5c:f408/64? What is its purpose?
- 7. What type of address is given with ff02::1:ff5c:f408? What is its purpose?


(Fragmenting IP Packets) Exercise 6

LAN B

4,000 bytes payload need to be transmitted via the IP protocol. The payload must be fragmented, because it is transmitted over multiple physical networks, whose MTU is < 4,000 bytes. Display graphically the way, the payload is fragmented, and how many bytes of payload each fragment contains.

LAN D

LAN E

Display graphically the way, the payload is fragmented, and how many bytes of payload each fragment contains.

LAN A

Exercise 7 (Forwarding and Path Calculation)

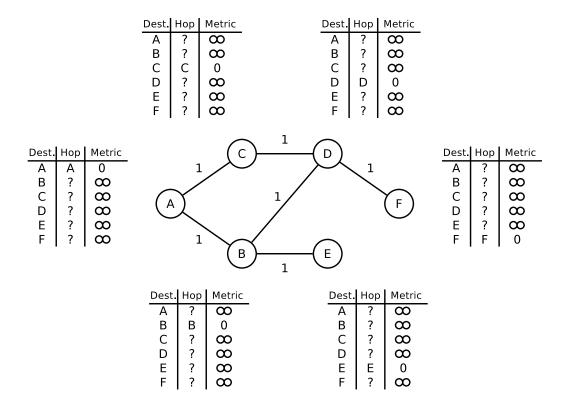
- 1. What is an **autonomous system**?
- 2. Which two major classes for adaptive, dynamic routing protocols exist?
- 3. Which **algorithms** are implemented by each of the routing protocol classes from subtask 2?
- 4. The Border Gateway Protocol (BGP) is a protocol for...

 \Box Intra-AS routing \Box Inter-AS routing

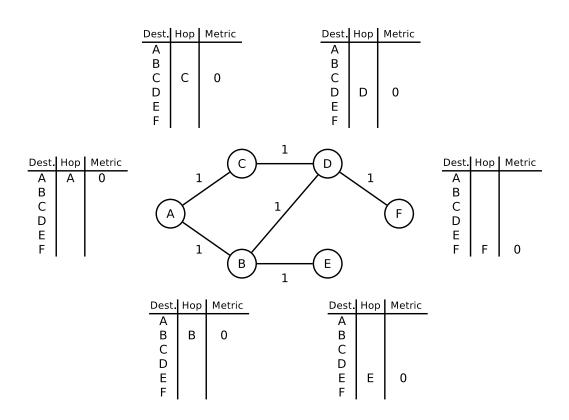
- 5. Which routing protocol class from subtask 2 implements the BGP?
- 6. Open Shortest Path First (OSPF) is a protocol for...

 \Box Intra-AS routing \Box Inter-AS routing

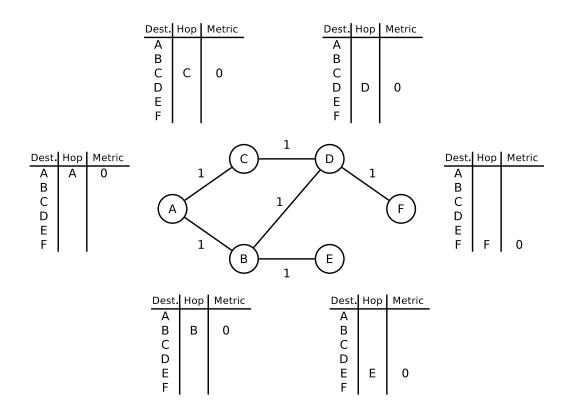
- 7. Which routing protocol class from subtask 2 implements OSPF?
- 8. The Routing Information Protocol (RIP) is a protocol for...

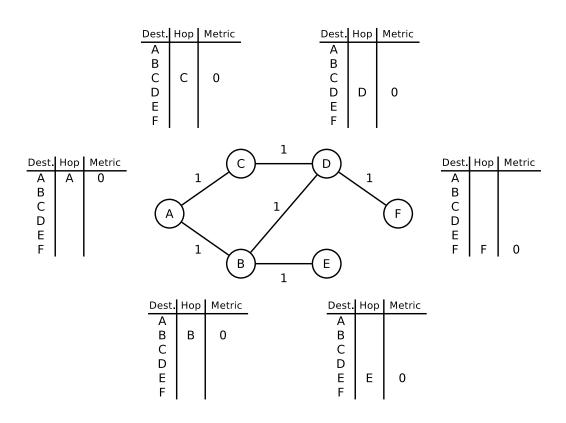

 \Box Intra-AS routing \Box Inter-AS routing

- 9. Which routing protocol class from subtask 2 implements the RIP?
- 10. When RIP is used, each Router communicates only with its **direct neighbors**. What are the **advantages** and **drawbacks** of method?
- 11. When RIP is used, the path cost (metric) depend only on the number of Routers (**hops**), which need to be passed on the way to the destination network. What is the **drawback** of this method?
- 12. When OSPF is used, **all Routers** communicate with each other. What are the **advantages** and **drawbacks** of method?

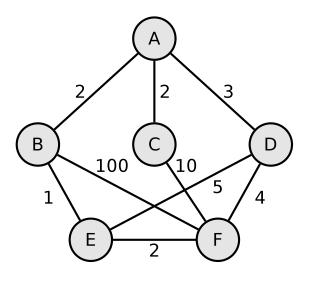

Exercise 8 (Bellman-Ford Algorithm)

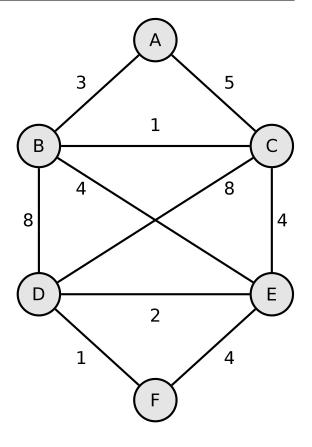
 Calculate the entries of the routing tables for each advertisement round of the Routing Information Protocol (RIP). (*The hop metric is used.*)


Step 1


Step 2

Step 3


Step 4


Exercise 9 (Dijkstra's Algorithm)

1. Calculate the shortest path from node A to all other nodes using Dijkstra's algorithm.

Source: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)

2. Calculate the shortest path from node A to all other nodes using Dijkstra's algorithm.

Exercise 10 (IPv6 Address Representation)

- 1. Simplify these IPv6 addresses:
 - 1080:0000:0000:0000:0007:0700:0003:316b

Solution: _____

- 2001:0db8:0000:0000:f065:00ff:0000:03ec Solution:
- 2001:0db8:3c4d:0016:0000:0000:2a3f:2a4d
 Solution:
- 2001:0c60:f0a1:0000:0000:0000:0000:0001
 Solution:
- 2111:00ab:0000:0004:0000:0000:1234
 Solution: _____
- 2. Provide all positions of these simplified IPv6 addresses:

Solution: ____: ___: ___: ___: ___: ___: ___:

Exercise 11 (Do some research)

- 1. The transition from IPv4 to IPv6 may indicate that one IP version number has been skipped. What happened to **IPv5**?
- 2. Explain the meaning of the fields Flags, MSS, Window, and irtt in the forwarding table as shown in task 2.
- 3. Explain what **BGP hijacking** is and list two popular incidents where it was used and why.
- 4. What is the **ASN** our university's network reside in?