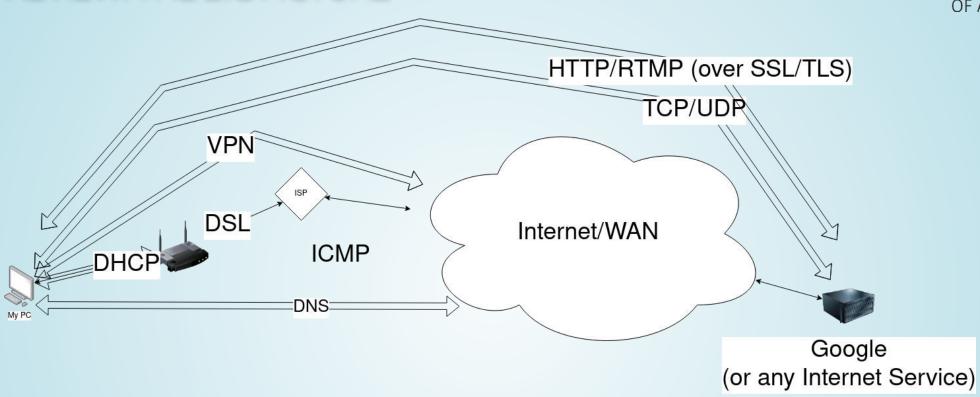


COMPUTER NETWORKS Data Link Layer - Framing and Switching

Prof. Dr. Oliver Hahm 2024-11-28


AGENDA

- Framing
 - Frame Detection
 - Ethernet (IEEE 802.3) Frames
 - WLAN (IEEE 802.11) Frames
- Addresses
- Switching
 - Devices
 - Forwarding
 - Loops

REVIEW: THE BIG PICTURE

DATA LINK LAYER

Functions of the Data Link Layer

- Framing Encapsulate network layer datagrams into frames
- Addressing Provide physical addresses (MAC addresses)
- Media Access Coordinate the access of the transmission medium
- Error Control Detect and potentially correct errors
- Flow Control Ensure that the data rate does not exceed the receiver's capacity

Devices:

Protocols:

Bridge, Switch, Modem

Ethernet, WLAN, Bluetooth, PPP

The Data Link Layer can be split into

- Media Access Control (MAC) sublayer and
- Logical Link Control (LLC) sublayer

OSI Reference Model

Application Layer					
Presentation Layer					
Session Layer					
Transport Layer					
Network Layer					
Data Link Layer					
Physical Layer					

FRAMING

FRAMING

- The receiver needs to split the bit stream from the Physical Layer into frames
- The sender encapsulates the packets from the Network Layer into frames

FRAME DETECTION

EXAMPLE: PROBLEMS IN TELEGRAPH SYSTEMS

Α	• —	M		Υ	
В		Ν	- •	Z	
С	_ · _ ·	Ο		1	• — — —
D		Р	• — — •	2	• • — — —
Е	•	Q		3	•••-
F	• • — •	R	• — •	4	• • • • —
G	——•	S	• • •	5	
Н	• • • •	Т	_	6	
	• •	U	• • —	7	
J	· — — —	V	• • • —	8	
K	_ • _	W	• — —	9	
L	. —	Χ		0	

Problem

• The sender meant:

 $\rightarrow DO$

• The receiver understood:

 \rightarrow EAT

How does the receiver know when a new PDU starts?

FRAME DETECTION

- The start of each frame needs to be marked
- Different ways exist to mark the frames' borders
 - Character count in the header
 - Byte/Character stuffing
 - Bit stuffing
 - Line code violations of Physical Layer with illegal signals
- All these different procedures have advantages and drawbacks

CHARACTER COUNT IN THE FRAME HEADER

- Include the character count in the header of the frame
- Example: the byte-oriented Digital Data Communications
 Message Protocol (DDCMP) of DECnet
- In each frame, the field Count contains the number of bytes payload inside the frame

8 Bits	14 Bits	2 Bits	8 Bits	8 Bits	8 Bits	16 Bits		16 Bits
SOH	Count	Flags	RESP	NUM	ADDR	CRC 1	Body	CRC 2
Start of Header	Number of bytes In payload					Checksum of header	Payload	Chacksum of payload

 Potential issue: If the field Count is modified during transmission, the receiver is unable to correctly detect the end of the frame

CONTROL SEQUENCES

 Control characters ("Sentinel characters") mark the start and end of the frames

• What is the problem here?

• An upper layer may want to send these bytes!

BYTE/CHARACTER STUFFING

- The method is called Byte Stuffing or Character Stuffing, because the...
 - sender inserts (stuffs) extra characters into the payload
 - receiver removes the stuffed characters from the received payload, before passing it to the Network Layer
- Drawback:
 - Strong relationship with the character encoding (e.g., ASCII)
 - More recent protocols of this layer no longer operate byte-oriented, but bitoriented because this allows using any character encoding

EXAMPLE: BYTE/CHARACTER STUFFING (BISYNC) F APPLIED SC

 A protocol, which highlights the frames border with special characters, is the byte-oriented (character-oriented) protocol **Binary Synchronous** Communication (BISYNC), which was invented by IBM in the 1960s

- The start of a frame highlights the character SYN
- The start of the header highlights the character SOH (Start of Header)
- The payload is between STX (Start of text) and ETX (End of Text)
- If the payload (body) contains an ETX character, it it must be escaped by a stuffed DLE (Data Link Escape)
- The DLE character is represented in the payload by sequence DLE DLE

BIT STUFFING

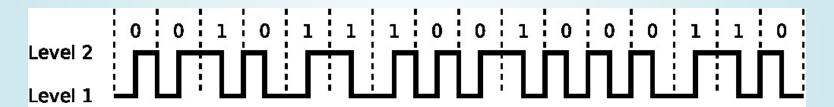
- When bit-oriented protocols are used, each frame begins and ends with a special bit pattern
 - With this method the sender inserts (stuffs) extra bits into the payload
 - The receiver removes the stuffed bits from the received payload, before passing it on

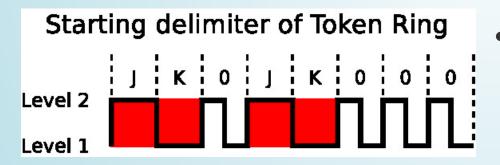
Advantages:

- Ensures that the start/end sequence does not occur in the payload
- Every character encoding can be used with this framing method

EXAMPLE: BIT STUFFING (HDLC)

- Examples: The protocol High-Level Data Link Control (HDLC) and the Point-to-Point Protocol (PPP), which implments HDLC
 - Each frame begins and ends with the sequence 011111110

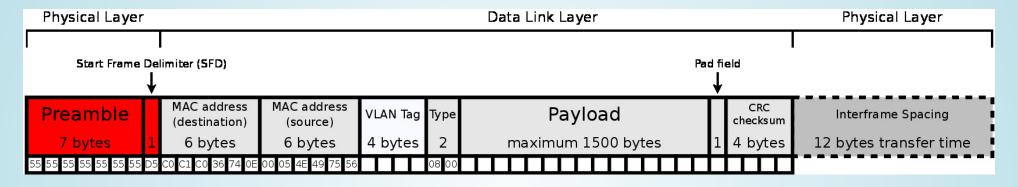

8 bits	8 bits	8 bits		16 bits	8 bits
Start sequence	Address	Control	Body	CRC	End sequence
01111110			Payload		01111110


- If the HDLC protocol in the Data Link Layer...
 - of the sender discovers 5 consecutive 1-bits in the bit stream from the Network Layer, it stuffs a 0-bit in the outgoing bit stream
 - of the receiver discovers 5 consecutive 1-bits, followed by a 0-bit in the bit stream from the Physical Layer, it removes (destuffs) the 0-bit

LINE CODE VIOLATIONS

- Depending on the line code used in the Physical Layer, illegal signals can be used to highlight the frame boundaries
 - Example: Token Ring uses the Differential Manchester Encoding
 - With this line code, a signal level change occurs inside each bit cell

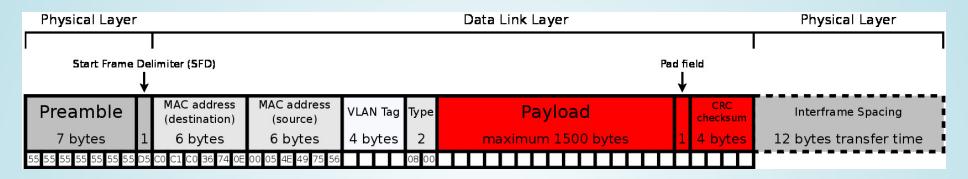
 If Token Ring is used, frames start with a byte (starting delimiter) which contains 4 line code violations


The second last byte (ending delimiter) of a Token Ring frame contains the same 4 line code violations as the starting delimiter

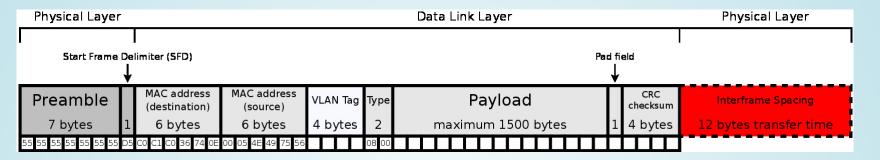
ETHERNET (IEEE 802.3) FRAMES


PREAMBLE AND SFD

- Preamble is a 7 bytes long bit sequence 101010 ...
 1010
 - Allows the receiver to synchronize with the clock and to identify the beginning of the frame
 - Is followed by the SFD (1 byte) with the bit sequence 10101011

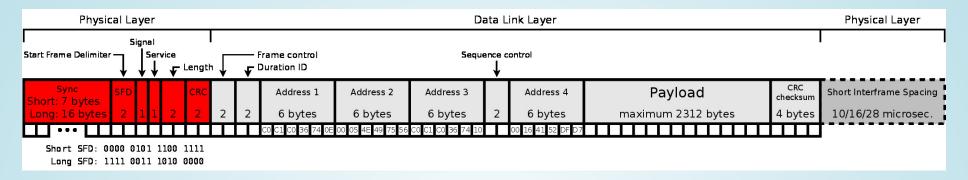

ADDRESSES AND VLAN TAG

- The field Type contains the information what protocol is used in the network layer
 - If IPv4 is used, the field Type has value 0x0800
 - If IPv6 is used, the field Type has value 0x86DD
- ı. The addithe payloach contains an ARP message the field Tyre has value 1000 boı.
- 2. Introduced by IEEE 802.1Q or IEEE 802.1ad.


FRAME SIZE AND CHECKSUM

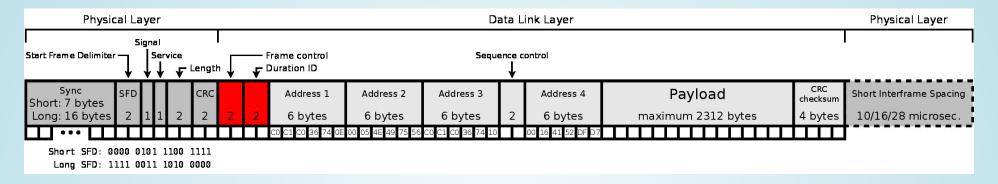
- Minimum size of an Ethernet frame: 72 bytes
- Maximum size (incl. preamble and SFD): 1526 bytes (1530 bytes incl. VLAN tag)
- The maximum frame size ¹ of Ethernet limits the payload to 1500 bytes
 - The Pad field can be used to increase the frame length to the minimum frame size (72 bytes)
- 1. Generically called the Maximum Transfer Unit (MTU).
- 2. The destricted contains archeoksum e2 (32 bits)

INTERFRAME SPACING


- The Interframe Spacing or Interframe Gap is the minimum idle period between the transmission of Ethernet frames
- The minimum idle period is 96 bit times (12 bytes)
 - It is 9.6 microseconds when using 10 Mbps Ethernet
 - It is 0.96 microseconds when using 100 Mbps Ethernet
 - It is 96 nanoseconds when using 1 Gbps Ethernet
- Some network devices allow to reduce the Interframe Spacing period
 - Benefit: Better data rate is possible
 - **Drawback**: For the receiver it may become impossible to detect the frames' borders (⇒⇒ the number of errors may rise)

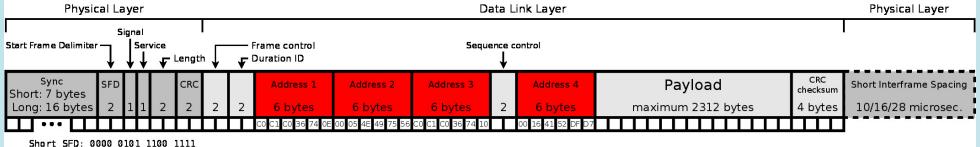
WLAN (IEEE 802.11) FRAMES

PREAMBLE AND LAYER 1 HEADER


Frame format for IEEE 802.11b

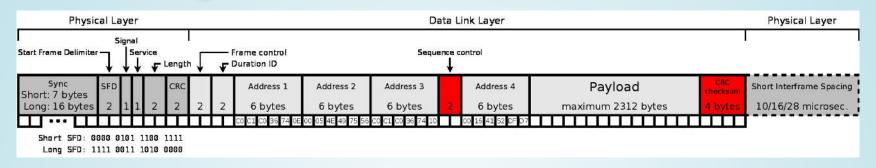
- For the Physical layer, the standard comprises...
 - a preamble to synchronize the receiver including a SFD ¹
 - a Signal field, specifying the payload data rate (1 to 11 Mbit/s)
 - a Service field, may contain additional information
 - a Length field, specifying the transmission time for the payload in microseconds
 - a CRC field, which contains a checksum over the fields Signal, Service and Length

^{1.} The Short Preamble Format is an optional standard which is not supported by all devices.


FRAME SIZE, FRAME CONTROL, AND NAV

- The field Frame Control (2 bytes) contains several smaller fields
 - Among other things, the protocol version, the type of frame (e.g., data frame or beacon), encryption with the WEP method
- The field Duration ID (2 bytes) contains a duration value for the update of the counter variable Network Allocation Vector (NAV) → Medium Access Control
 - Maximum frame size of a WLAN frame (link layer part): 2346 bytes

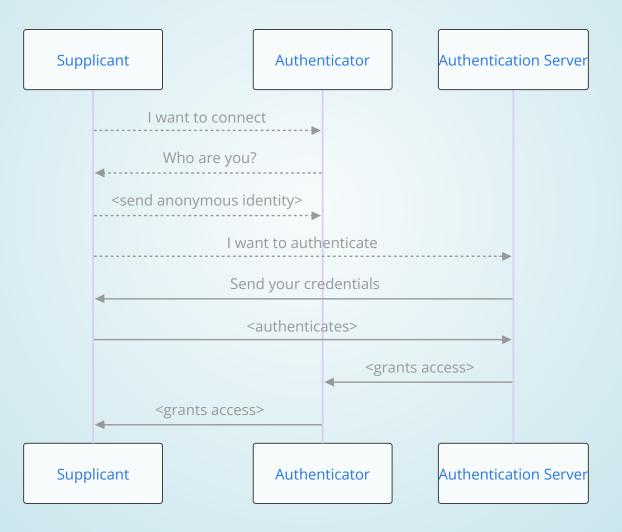
ADDRESS FIELDS AND SSIDS


Short SFD: 0000 0101 1100 1111 Long SFD: 1111 0011 1010 0000

Possible use of the address fields:

- Address 1: MAC of receiver (Destination Address)
- Address 2: MAC of sender (Source Address)
- Address 3: Used for filtering
- Address 4: is used for communication between APs in ESSID configuration or in a mesh network

SEQUENCE CONTROL AND CRC



- The field Sequence Control (2 bytes) consists of a fragment number (4 bits) and a sequence number (12 bits)
 - If a frame has been split into several fragments, the sequence number is equal for all fragments
- The final field contains a CRC checksum (32 bits) that covers all fields, except the payload

IEEE 802.1X AND EAP

IEEE 802.1X is a standard for port-based link access control. In WLAN networks like for instances eduroam the Extensible Authentication Protocol (EAP) is used.

ADDRESSES

ADDRESSING IN THE DATA LINK LAYER

- The Data Link Layer protocols specify the format of the physical network addresses
- Terminal devices (Hosts) or Routers
 - Such devices must be addressable on Data Link Layer because they provide services at upper protocol layers
- Bridges and Switches do not actively participate in the communication
 - Typically they do not require an address, because their main purpose is filtering and forwarding of frames
 - Their address becomes relevant to establish a hierarchy (\rightarrow see slide) or providing a configuration interface
- Note: Repeaters and Hubs that operate only at the Physical Layer, have no addresses

MAC ADDRESSES

EUI-48 and EUI-64 MAC addresses can be formed according to the numbering spaces based on Extended Unique Identifiers (EUI) managed by the IEEE:

EUI-48 (e.g., Ethernet, WLAN, Bluetooth) and EUI-64 (Firewire, 6LoWPAN, Zigbee)

BROADCAST AND MULTICAST MAC ADDRESSES

- The least significant bit (LSB) of an addresses' first byte is called the Individual/Group (I/G) bit
- It indicates whether the frame is intended for a single receiver (unicast) or multiple ones (multicast/broadcast)
- MAC broadcast address
 - In IEEE 802 networks all 48 bits of this MAC address have the value 1
 - Hexadecimal notation: FF-FF-FF-FF-FF
- Frames with the I/G bit set are sent only once but forwarded to multiple (potentially all) ports of the switch

 Each MAC address is intended to be permanently assigned to a network device and unique

But it is often possible to modify MAC addresses by software

-	MAC addresses	Manufacturer	MAC addresses	Manufacturer
r	00-20-AF-xx-xx-xx	3COM	00-0C-6E-xx-xx-xx	Asus
† +	00-00-0C-xx-xx	Cisco	08-00-2B-xx-xx-xx	DEC
Ų	00-01-E6-xx-xx-xx	Hewlett-Packard	00-02-B3-xx-xx-xx	Intel
	00-04-5A-xx-xx-xx	Linksys	00-04-E2-xx-xx-xx	SMC
	00-03-93-xx-xx-xx	Apple	00-50-8B-xx-xx-xx	Compaq
	00-02-55-xx-xx-xx	IBM	00-09-5B-xx-xx-xx	Netgear

independently for their network devices

 \blacksquare That address space allows $2^{24}=16,777,216$ individual device addresses per OUI for IEEE 802 devices

SECURITY ASPECTS OF MAC ADDRESSES

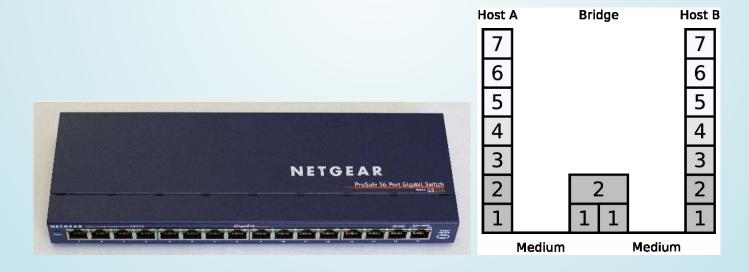
- For WLAN, MAC filters are often used to protect the Access Point
 - In principle, this makes sense, because the MAC address is the unique identifier of a network device
- However, the security level of MAC filters is low because MAC addresses can be modified via software
 - The method is called MAC spoofing

Working with MAC addresses under Linux

- Read out the own MAC address(es): ip link or ifconfig
- Read out the MAC address(es) of the neighbors (mostly the Routers): ip neigh
- Set MAC address: ip link set dev <Interface> address <MAC Address>

SWITCHING

DEVICES



• What is the purpose of the devices on Layer 1? Which additional functionalities can be introduced on

DEVICES OF THE DATA LINK LAYER: BRIDGES

- Remember: Devices of the Physical Layer increase the length of physical networks
- For connecting different physical networks, bridges are required
- A bridge has only 2 ports
 - They typically connect networks based on different technologies ⇒ see slides and
- Bridges with > 2 ports are called Switch

DEVICES OF THE DATA LINK LAYER: BRIDGES

Virtual Bridges Bridges can be virtualized in software (e.g., to connect virtual machines)

- Simple bridges forward all incoming frames
- Bridges and switches check the correctness of the frames via checksums
- They operate transparently

EXAMPLE: WLAN BRIDGE

- Integrates network devices with RJ45
 jacks (e.g., network printers, desktops,
 gaming consoles,...) into a wireless local
 area network (WLAN)
- Connects a cable-based network with a wireless network

EXAMPLE: LASER BRIDGE

- Connect two sites via laser
 - Each site is equipped with a transmitter (TX) and a receiver (RX) (\rightarrow Transceiver)
 - Allows for a high data rate
 - Requires line of sight

Source: http://www.made-in-zelenograd.com and http://www.laseritc.ru

Interesting build instructions for your own laser bridge

- https://hackaday.com/2017/04/19/go-wireless-with-this-diy-laser-ethernet-link/
- http://blog.svenbrauch.de/2017/02/19/homemade-10-mbits-laser-optical-ethernet-transceiver/

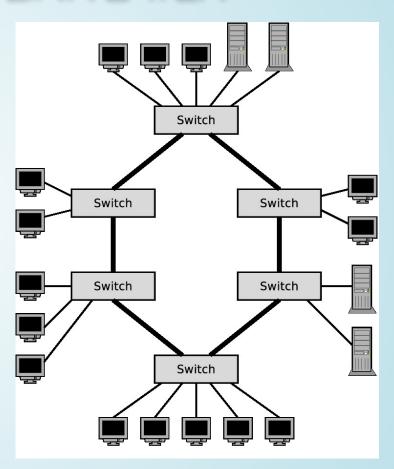
FORWARDING

LEARNING BRIDGES

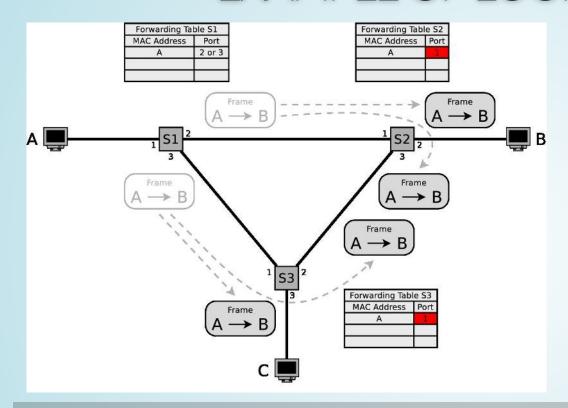
- The forwarding table is not complete all the time
 - This is not a problem, because the table is only used for optimization
 - If no entry for a given address exists, the frame is typically sent on all ports

FORWARDING STRATEGIES

- A switch can implement different forwarding strategies:
 - Store-and-Forward
 The whole frame is received and buffered. After checking its integrity it is forwarded
 - Cut-Through
 As soon as the destination address field has been received, the frame is forwarded towards the receiver
 - Adaptive Cut-Through
 Cut-Through strategy is used unless a certain error threshold is reached
 (→ store-and-forward)
 - Fragment-Free-Cut-Through
 If the first 64 bytes are received without an error, the frame is forwarded


LOOPS

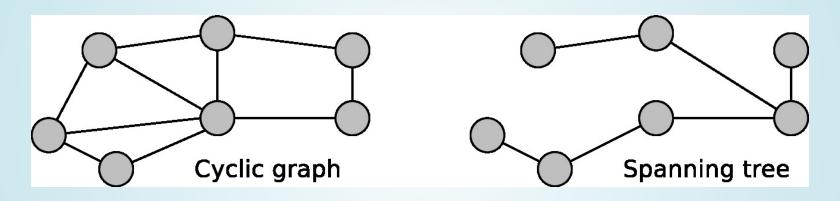
LOOPS ON THE DATA LINK LAYER


Loops are a potential issue on the Data Link Layer:

- On the Data Link Layer only one path per destination should exist at one point in time
 - Otherwise frames get duplicated and arrive multiple times at the destination
- Loops can reduce the performance of the network or even lead to a network failure
 - On the other hand, redundant connections serve as a backup in case of a cable failure

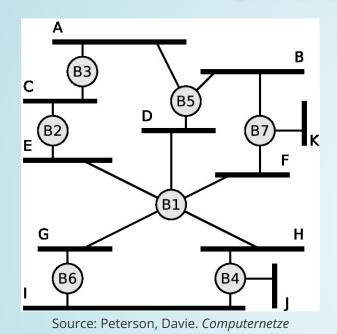
EXAMPLE OF LOOPS IN A LAN

- Ethernet does not contain any TTL or HopLimit
 - Therefore, this loop will not stop until the tables in the switches contain an entry for node B


Similar examples can be found here:

- Olivier Bonaventure. http://cnp3book.info.ucl.ac.be/2nd/html/protocols/lan.html
- Rüdiger Schreiner. Computernetzwerke. Hanser (2009)

HANDLE LOOPS IN THE LAN


- Bridges need to be able to handle loops
- Solution: create logical hierarchy

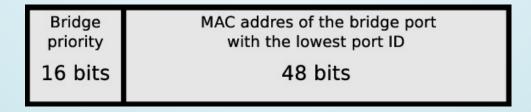
- A computer network, which consists of multiple physical networks, is a graph that may contain loops
 - The spanning tree is a subgraph of the graph that covers all nodes, but is cyclefree, because edges have been removed
 - The implementation of the algorithm is the Spanning Tree Protocol (STP)

SPANNING TREE PROTOCOL

The STP was developed in the 1980s by Radia Perlman at Digital Equipment Corporation (DEC)

- The figure contains multiple loops
 - Via the STP, a group of bridges can reach an agreement for creating a spanning tree
 - By removing single ports of the bridges, the computer network is reduced to a cycle-free tree
- The algorithm works in a dynamic way
 - If a bridge fails, a new spanning tree is created

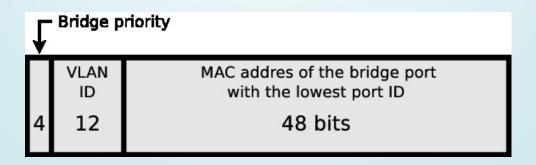
The protocol and format of the configuration messages are described in detail in the standard IEEE 802.1D



SPANNING TREE PROTOCOL - BRIDGE ID

- For the functioning of STP, each bridge needs an unique identifier
 - Length of the identifier (bridge ID): 8 bytes
 - 2 different implementations of the bridge ID exist

1. Bridge ID according to IEEE


- The bridge ID consists of the bridge priority (2 bytes) and MAC address (6 bytes) of the bridge port with the lowest port ID
 - The bridge priority can be set by the administrator himself and can have any value between 0 and 65,535
 - Default value: 32,768

SPANNING TREE PROTOCOL – CISCO BRIDGE IDS FAPPLIED SCIENCES

2. Cisco extension of the bridge ID, introducing the Extended System ID

- Cisco supports bridges where each virtual LAN (VLAN) creates its own spanning tree
- The original 2 bytes long part for the bridge priority is subdivided
 - 4 bits now represent the bridge priority
 - ⇒ only 16 values can be represented
 - ⇒ the value of the bridge priority need to be zero or a multiple of 4,096
 - \implies 0000 = 0, 0001 = 4,096 ... 1110 = 57,344, 1111 = 61,440
 - 12 bits are called Extended System ID and encode the VLAN ID
 - ⇒ The content matches the VLAN tag of the Ethernet frames
 - ⇒ With 12 bits, 4,096 different VLANs can be addressed

SPANNING TREE PROTOCOL - FUNCTIONING

The path costs have been standardized by the IEEE, but can be adjusted manually

Data rate	Path costs
10.000 Mbps	2
1.000 Mbps	4
100 Mbps	19
16 Mbps	62
10 Mbps	100
4 Mbps	250

SUMMARY

You should now be able to answer the following questions:

- What are the tasks of the Data Link Layer and what are the sublayers?
- Which mechanisms exist to detect the mark a frame?
- Which information does a frame contain?
- What are the properties of a MAC address and how do it look for IEEE 802 networks?
- How does switching/forwarding work?
- What is the problem of loops on the Data Link Layer and how can it be tackled?

