Computer Networks Exercise Session 09

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

January 15, 2025

General Schedule

All exercises will follow this general schedule

- Identify potential understanding problems
 - \rightarrow Ask your questions
 - ightarrow Recap of the lecture
- Address the understanding problems
 - \rightarrow Answer your questions
 - → Repeat certain topics
- $lue{}$ Walk through the exercises/solutions ightarrow Some hints and guidance
 - \rightarrow Work time or presentation of results

Network Layer: Addressing

You have seen ...

- the purpose and format of IPv4 and IPv6 addresses
- the original classes of IPv4 networks, what CIDR and what subnets are
- how to connect private networks to the Internet using NAT
- that IP datagrams can be fragmented if they are too big for a single frame on the data link layer
- why a successor for IPv4 was needed and how IPv6 tackles the challenges

- An IPv4 address without a subnet mask is ambiguous
 - \Rightarrow Tools like *iputils* (\rightarrow ip) require the IPv4 address in CIDR notation
 - E.g.,
 - ip addr add 192.168.7.3/24 dev wlan0
 - Reminder: CIDR notations specifies the number of masked bits \Rightarrow /24 \rightarrow 255.255.255.0
- 10.1.2.3/24 is different from 10.1.2.3/16¹

¹Both addresses cannot be used in the same network.

- An IPv4 address without a subnet mask is ambiguous
 - \Rightarrow Tools like *iputils* (\rightarrow ip) require the IPv4 address in CIDR notation
 - E.g.,
 - ip addr add 192.168.7.3/24 dev wlan0
 - Reminder: CIDR notations specifies the number of masked bits \Rightarrow /24 \rightarrow 255.255.255.0
- 10.1.2.3/24 is different from 10.1.2.3/16¹
 - 00001010 00000001 00000010 00000011 AND
 11111111 11111111 11111111 00000000
 versus
 00001010 00000001 00000010 00000011 AND
 11111111 11111111 00000000 00000000

¹Both addresses cannot be used in the same network.

- An IPv4 address without a subnet mask is ambiguous
 - \Rightarrow Tools like *iputils* (\rightarrow ip) require the IPv4 address in CIDR notation
 - E.g.,
 - ip addr add 192.168.7.3/24 dev wlan0
 - Reminder: CIDR notations specifies the number of masked bits \Rightarrow /24 \rightarrow 255.255.255.0
- 10.1.2.3/24 is different from 10.1.2.3/16¹
- Subnet masks are often multiples of eight bits, but not always e.g., 10.21.42.83/28

¹Both addresses cannot be used in the same network.

- An IPv4 address without a subnet mask is ambiguous
 - \Rightarrow Tools like *iputils* (\rightarrow ip) require the IPv4 address in CIDR notation
 - E.g.,
 - ip addr add 192.168.7.3/24 dev wlan0
 - Reminder: CIDR notations specifies the number of masked bits \Rightarrow /24 \rightarrow 255.255.255.0
- 10.1.2.3/24 is different from 10.1.2.3/16¹
 - 00001010 00000001 00000010 00000011 AND
 11111111 11111111 11111111 00000000
 versus
 00001010 00000001 00000010 00000011 AND
 11111111 11111111 00000000 00000000
- Subnet masks are often multiples of eight bits, but not always e.g., 10.21.42.83/28
 - What's the subnet mask for this address?

¹Both addresses cannot be used in the same network.

- An IPv4 address without a subnet mask is ambiguous
 - \Rightarrow Tools like *iputils* (\rightarrow ip) require the IPv4 address in CIDR notation
 - E.g.,
 - ip addr add 192.168.7.3/24 dev wlan0
 - Reminder: CIDR notations specifies the number of masked bits $\Rightarrow /24 \rightarrow 255.255.255.0$
- 10.1.2.3/24 is different from 10.1.2.3/16¹
 - 00001010 00000001 00000010 00000011 AND
 11111111 11111111 11111111 00000000
 versus
 00001010 00000001 00000010 00000011 AND
 11111111 11111111 00000000 00000000
- Subnet masks are often multiples of eight bits, but not always e.g., 10.21.42.83/28
 - What's the subnet mask for this address?
 - ightarrow /28 ightarrow 11111111 11111111 11111111 11110000 ightarrow 255.255.255.240

¹Both addresses cannot be used in the same network.

- An IPv4 address without a subnet mask is ambiguous
 - \Rightarrow Tools like *iputils* (\rightarrow ip) require the IPv4 address in CIDR notation
 - E.g.,
 - ip addr add 192.168.7.3/24 dev wlan0
 - Reminder: CIDR notations specifies the number of masked bits \Rightarrow /24 \rightarrow 255.255.255.0
- 10.1.2.3/24 is different from 10.1.2.3/16¹
 - 00001010 00000001 00000010 00000011 AND
 11111111 11111111 11111111 00000000
 versus
 00001010 00000001 00000010 00000011 AND
 11111111 11111111 00000000 00000000
- Subnet masks are often multiples of eight bits, but not always e.g., 10.21.42.83/28
 - What's the subnet mask for this address?
 - \rightarrow /28 \rightarrow 11111111 11111111 11111111 11110000 \rightarrow 255.255.255.240
 - What's the network address?

¹Both addresses cannot be used in the same network.

- An IPv4 address without a subnet mask is ambiguous
 - \Rightarrow Tools like *iputils* (\rightarrow ip) require the IPv4 address in CIDR notation
 - E.g.,
 - ip addr add 192.168.7.3/24 dev wlan0
 - Reminder: CIDR notations specifies the number of masked bits $\Rightarrow /24 \rightarrow 255.255.255.0$
- 10.1.2.3/24 is different from 10.1.2.3/16¹
 - 00001010 00000001 00000010 00000011 AND 11111111 11111111 11111111 00000000 versus 00001010 00000001 00000010 00000011 AND 11111111 11111111 00000000 00000000
- Subnet masks are often multiples of eight bits, but not always e.g., 10.21.42.83/28
 - What's the subnet mask for this address?
 - \rightarrow /28 \rightarrow 11111111 11111111 11111111 11110000 \rightarrow 255.255.255.240
 - What's the network address?
 - \rightarrow 10.21.52.80/28

¹Both addresses cannot be used in the same network.

Exercise 2: Forwarding Process

- The OS uses a forwarding table (or forwarding information base (FIB)) to select the appropriate interface for sending a packet
- The selector is the destination IP address of the outgoing (or forwarded) packet
- The FIB contains at least two columns:
 - The destination network address
 - The interface
- Optionally it may contain a gateway
- The OS performs a longest prefix match on the selector

Exercise 2: Longest Prefix Matching

- The longest (best) matching prefix from the FIB is chosen
- The destination IP address is compared bit by bit with the network addresses in the FIB
- The number of compared bits depends on the prefix length of the FIB entry
- The longest matching prefix is selected and the according interface will be chosen
- There is typically a default entry (0.0.0.0/0 for IPv4) that always matches

Exercise 2: Inspect the FIB

- On Linux you can query your routing table with iputils (→ ip route show or simply ip r)
- On Windows and Linux you can also use netstat -r[n]
- The result may look like this:

Kernel IP routing table

NOTICE II TOUGHA CADIC					
Destination	Gateway	Genmask	Flags	MSS Window	irtt Iface
default	10.51.0.1	0.0.0.0	UG	0 0	0 wlan0
10.2.0.0	0.0.0.0	255.255.255.0	U	0 0	0 enp0s31f6
10.51.0.0	0.0.0.0	255.255.0.0	U	0 0	0 wlan0
192.168.0.0	0.0.0.0	255.252.0.0	U	0 0	0 wlan0

Exercise 3: Subnetting

IP address	172.21.240.90	10101100	00010101	11110000	01011010
Class B	255.255.0.0	11111111	11111111	00000000	00000000
Subnet mask	255.255.255.224	11111111	11111111	11111111	11100000

Exercise 3: Subnetting

IP address	172.21.240.90	10101100 00010101 11110000 01011010	
Class B	255.255.0.0	11111111 11111111 00000000 00000000	
Subnet mask	255.255.255.224	11111111 11111111 11111111 11100000	
Network address	172.21.240.64	10101100 00010101 11110000 01000000	

Exercise 3: Subnetting

IP add	ress	172.21.240.90	10101100	00010101	11110000	01011010
Class E	3	255.255.0.0	11111111	11111111	00000000	00000000
Subnet	: mask	255.255.255.224	11111111	11111111	11111111	111 00000
Netwo	rk address	172.21.240.64	10101100	00010101	11110000	01000000

IP address AND (NOT subnet mask) = host ID

IP address	172.21.240.90	10101100 00010101 11110000 01011010
Subnet mask	255.255.255.224	11111111 11111111 11111111 11100000
Inverse subnet mask	000.000.000.31	00000000 00000000 00000000 00011111
Host ID	26	00000000 00000000 00000000 00011010

Exercise 4: Address Types and Spaces

- Private addresses (unique local addresses in IPv6)
 - "have no global meaning"²
 - "routing information [...] shall not be propagated" in the Internet, and
 - "packets with private source or destination addresses should not be forwarded"²
- lacktriangle May be forwarded inside a LAN (o link-local addresses are never forwarded)
- Edge routers ideally filter traffic using address from private address space

Exercise 4: Address Types and Spaces

- Private addresses (unique local addresses in IPv6)
 - "have no global meaning"²
 - "routing information [...] shall not be propagated" in the Internet, and
 - "packets with private source or destination addresses should not be forwarded"²
- May be forwarded inside a LAN (\rightarrow *link-local addresses* are never forwarded)
- Edge routers ideally filter traffic using address from private address space

Pinging broadcast addresses

```
user@host> ping -b 10.0.34.255

PING 10.0.34.0 (10.0.34.0) from 10.0.34.197 : 56(84) bytes of data.
64 bytes from 10.0.34.197: icmp_seq=1 ttl=64 time=0.049 ms
64 bytes from 10.0.34.236: icmp_seq=1 ttl=255 time=0.163 ms (DUP!)
64 bytes from 10.0.34.206: icmp_seq=1 ttl=255 time=0.211 ms (DUP!)
64 bytes from 10.0.34.196: icmp_seq=1 ttl=255 time=0.213 ms (DUP!)
64 bytes from 10.0.34.181: icmp_seq=1 ttl=255 time=0.220 ms (DUP!)
64 bytes from 10.0.34.174: icmp_seq=1 ttl=255 time=0.243 ms (DUP!)
64 bytes from 10.0.34.133: icmp_seq=1 ttl=255 time=0.245 ms (DUP!)
```

Exercise 5: Fragmenting IP Packets

- Any router can fragment (unless the DF bit is not set)
- Only the receiver reassembles
- In IPv4:
 - Any router "must be able to forward a datagram of 68 octets without further fragmentation"
 - Any host "must be able to receive a datagram of 576 octets either in one piece or in fragments to be reassembled"³
- "IPv6 requires that every link in the internet have an MTU of 1280"⁴ octets or greater

³RFC 791

⁴RFC 2460

Exercise 6: Fragmenting IP Packets

```
Destination
                                                                    Protocol Length Info
     3 1.686621 192.168.12.192
                                    192.168.1.192
                                                                    IPV4
                                                                            1508 Fragmented IP protocol (proto-upp 17, off-0, ID=02ba) [Reassembled in #4]
     5 1.686874 192.168.1.192
                                    192,168,12,192
                                                                            1508 Fragmented IP protocol (proto-UDP 17, off=0, ID=3054) [Reassembled in #6
     6 1.686891 192.168.1.192
                                    192.168.12.192
                                                                              91 Source port: safetynetp Destination port: scp-config
Frame 4: 91 bytes on wire (728 bits), 91 bytes captured (728 bits)
Ethernet II, Src: b8:ca:3a:5f:24:d2 (b8:ca:3a:5f:24:d2), Dst: InspurEl_13:7e:0b (6c:92:bf:13:7e:0b)
☐ Internet Protocol Version 4, Src: 10.55.205.215 (10.55.205.215), Dst: 10.55.205.228 (10.55.205.228)
   0100 .... = version: 4
   Header length: 20 bytes
 @ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))
   Total Length: 77
   Identification: 0x431b (17179)
 ⊞ Flags: 0x00
   Fragment offset: 0
   Time to live: 64
   Protocol: UDP (17)
 Source: 10.55, 205, 215 (10, 55, 205, 215)
   Destination: 10.55.205.228 (10.55.205.228)
   [Source GeoIP: Unknown]
   [Destination GeoIP: Unknown]
user Datagram Protocol, Src Port: 53834 (53834), Dst Port: otv (8472)
H Virtual extensible Local Area Network
Ethernet II, Src: a2:36:11:af:b9:a4 (a2:36:11:af:b9:a4), DST: b2:8b:8e:60:e6:b9 (b2:8b:8e:60:e6:b9)
Internet Protocol Version 4. Src: 192.168.12.192 (192.168.12.192). Dst: 192.168.1.192 (192.168.1.192)
   0100 .... = version: 4
   Header length: 20 bytes
 # Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))
   Total Length: 27
   Identification: 0x02ba (698)
 E Flags: 0x00
   Fragment offset: 1424
   Time to live: 64
   Protocol: UDP (17)
 # Header checksum: 0xe795 [correct]
   Source: 192,168,12,192 (192,168,12,192)
   Destination: 192.168.1.192 (192.168.1.192)
   [Source GeoIP: Unknown]
    [Destination GeoIP: Unknown]
 □ [2 IPv4 Fragments (1431 bytes): #3(1424), #4(7)]
     [Frame: 3, payload: 0-1423 (1424 bytes)]
     [Frame: 4, payload: 1424-1430 (7 bytes)]
      Fragment count: 21
      [Reassembled IPv4 length: 1431]
 User Datagram Protocol, Src Port: scp-config (10001), Dst Port: safetynetp (40000)
Data (1423 bytes)
```

Source: https://hustcat.github.io/