Exercise Sheet 2

Exercise 1 (Layers of Reference Models)

1. Fill in the names of the layers of the reference models in the figure.

- 2. Assign to technical terms *Frames*, *Packets*, *Segments* and *Signals* to the layers of the reference models in the figure.
- 3. Why are the Presentation Layer and the Session Layer not intensively used?
- 4. Why is the hybrid reference model closer to reality, compared with the TCP/IP reference model?

Exercise 2 (Quantization and Sampling)

- 1. Why do quantization and sampling create errors? Can we avoid these errors?
- 2. Taking the classical telephony example: How often should the system sample the signal?
- 3. What is the maximum data rate without noise? Is this realistic?

Source: Prof. Dr. Jochen Schiller, FU Berlin (2015)

Exercise 3 (Bit Rate and Symbol Rate)

The unit of bit rate is bit/s, whereas the symbol rate is given in baud.

- 1. How are these two units related?
- 2. Under which circumstances are symbol rate and bit rate equal?
- 3. Is it possible that the bit rate is smaller than the symbol rate?
- 4. Why can a symbol not carry an arbitrary amount of bits?

Source: Prof. Dr. J. Seitz, M. Aumüller, TU Ilmenau (2018)

Exercise 4 (Data Rate)

In classical telephone network the maximum data rate without digital telephone switch is limited to max. 33.6 kbit/s. A 33.6k Modem uses the *trellis coded modulation* (TCM) to transmit the bits over the telephone line.

- 1. In order to reach this data rate a symbol rate of 3429 baud has been achieved. How many bits must be encoded in a single symbol?
- 2. Explain why the system uses a modulation scheme to transmit the data instead of line coding.
- 3. Calculate SNR a telephone line has to provide in order to achieve this data rate.
- 4. Calculate the signal strength if there exists noise of 0.1 kW on the line.

Exercise 5 (Line Codes)

- 1. Explain why computer networks require line codes.
- 2. Many different line codes exist. Explain why it is impossible to use one single line code for every network technology.
- 3. Explain the way Non-Return-To-Zero (NRZ) works.
- 4. Name the two problems that can occur when NRZ is used to encode data.
- 5. Explain both problems from subtask 4 in detail.
- 6. Explain how the problems from subtask 4 can be avoided.

- 7. Name at least 5 line codes that use 2 signals levels.
- 8. Name at least 3 line codes that use 3 signal levels.
- 9. Which line codes ensure a signal level change for each logical 1 bit?
- 10. Which line codes ensure a signal level change for each transmitted bit?
- 11. Why do not all line codes ensure a signal level change for each transmitted bit?
- 12. Which line codes ensure that the signal levels are equally distributed?
- 13. Why is it important for the receiver of signals, which are encoded according to the Differential Manchester Encoding, to know the initial signal level?
- 14. What is a scrambler?
- 15. All line codes have drawbacks. What can be done to avoid the problems, that can result from these drawbacks?
- 16. Which line code maps groups of **4** payload bits onto groups of **5** code bits?
- 17. Which line code maps groups of **5** payload bits onto groups of **6** code bits?
- 18. Why do some line codes, that map groups of payload bits onto groups of code bits, implement variants with neutral inequality, positive inequality and negative inequality?
- 19. How is the efficiency of a line code calculated?

Exercise 6 (Encoding Data with Line Codes)

1. Give the encodings for the given bit pattern. Attention: Please assume that the initial signal level of NRZI and Differential Manchester Encoding is signal level 1 (low signal).

- 2. Encode the bit sequences with 4B5B and NRZI and draw the signal curve.
 - 0010 1111 0001 1010
 - 1101 0000 1001 1110

Attention: Please assume that the initial signal level of NRZI is signal level 1 (low signal).

Label	4B	5B	Fune	ction							
0	0000	11110	0 hexadecimal								
1	0001	01001	1 hexadecimal								
2	0010	10100	2 hexadecimal								
3	0011	10101	3 he	cadeci	mal						
4	0100	01010	4 he	cadeci	mal						
5	0101	01011	5 he	cadeci	mal						
6	0110	01110	6 he	cadeci	mal						
7	0111	01111	7 hexadecimal								
8	1000	10010	8 hexadecimal								
9	1001	10011	9 hexadecimal								
Α	1010	10110	A hexadecimal								
В	1011	10111	B hexadecimal								
С	1100	11010	C hexadecimal								
D	1101	11011	D hexadecimal								
E	1110	11100	E hexadecimal								
F	1111	11101	F hexadecimal								

- 3. Encode the bit sequences with 5B6B and NRZ and draw the signal curve.
 - 00001 01011 11000 01110 10011
 - 5BB 6B6B5B6B6B6Bneutralpositive negative neutralpositivenegative
- 11010 11110 01001 00010 01110

Exercise 7 (Do some research)

- 1. In the late 1980s modems typically achieved a data rate of 9.6 kbit/s (2400 baud). Which modulation scheme was used and how many bits could be employed per symbol?
- 2. Find out which (historical) data storage used Differential Manchester Encoding.
- 3. An Internet access over ISDN (Integrated Services Digital Network) offers a data rate of 64 kbit/s (single B channel). Why did it still provide a much more significant advantage over, for instance, 56k modem connections?
- 4. The (in)famous *hacker* John Thomas Draper is widely known as **Captain Crunch**. Explain the origin of this nickname and how it related to the principles of the physical layer.

Exercise 8 (Lab Exercise: Traffic Monitoring)

For this exercise you have to boot the image labeled **PCNA-Lab** on the lab PCs again.

- After booting and logging in, start a terminal emulator again and activate your network interface by calling: sudo ip link set eno2 up
- 2. Now you should start the *Wireshark* application and start to capture the traffic on that device (double click on *eno2*).
- 3. Go back to the terminal emulator and call sudo dhclient
- 4. Analyze the captured traffic:
 - Which protocols are involved during network interface initialization?
 - Map the identified protocols to the individual layers of the OSI reference model.
 - Identify the encapsulation (the header and potentially trailer data) on each layer.
 - Open a web browser and open http://example.teaching.dahahm.de. Filter the traffic in Wireshark to display only the communication towards the web server.
 - Run an *iperf3* measurement between your computer and your neighbor's one and identify the corresponding traffic in Wireshark.