Computer Networks

Basics

Prof. Dr. Oliver Hahm

2024 - 10 - 21

Agenda

Historical background	1
Components and Terms	6
Reference Models	12
Topologies	20

Historical background

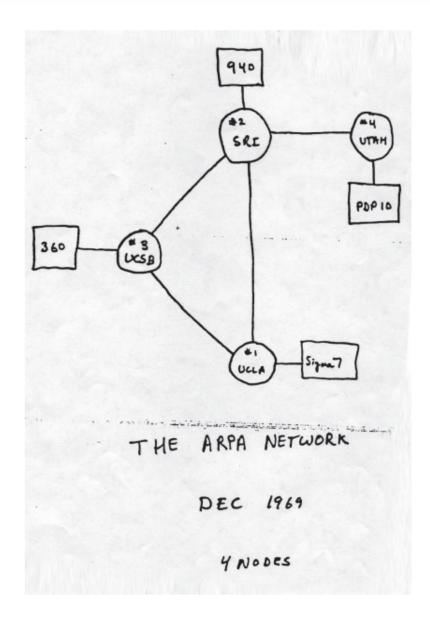
Success Factors

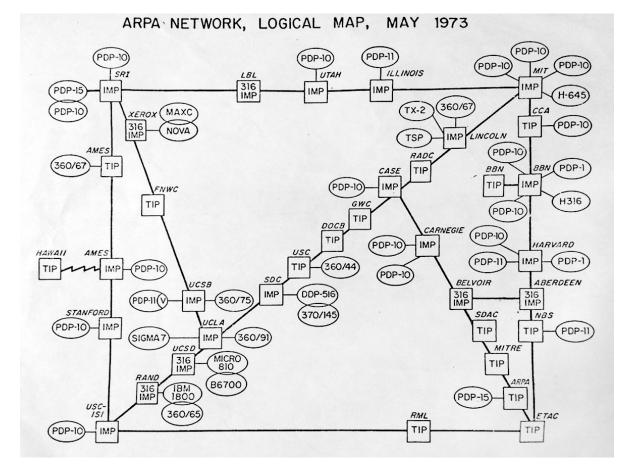
Which concept had the biggest impact on the success of the Internet?

The concept of ${\bf Freedom}$ and ${\bf Openness}$

- Free and Open Systems
- Free and Open Standards
- Free and Open Source

Why Freedom and Openness are important?


- Diversity
- Security
- Sustainability
- (Digital) Sovereignty


- Privacy
- Freedom

The ARPANET

- **1957:** Foundation of the Advanced Research Projects Agency (ARPA) by the US Dept of Defense (DoD) in response to *Sputnik*
- **1962**: The idea of the 'Internet' as 'tool to create critical mass of intellectual resources' (Licklider, Taylor)
- **1967**: Plan for the ARPANET was published Main architects: *Vinton Cerf, Bob Kahn*
- **1969**: First Request for Comments (RFC) and first functioning network, rented 50 kBit/sec lines, Interface Message Processors by BBN

First Internet Protocols

- **1972**: First public demo (remote login) using the Network Control Protocol (NCP) main use: terminal sessions, file transfer, Electronic Mail
- 1974: Basics of TCP/IP written on paper by Cerf/Kahn (IP=Internet Protocol, TCP=Transmission Control Protocol), standardization in the following years
- 1982: Transition towards IP version 4 (IPv4)
- from 1983:: Dissemination of TCP/IP due to Berkeley UNIX 4.2 BSD, source code publicly available

Standardization

- **1986**: The Internet Engineering Task Force (IETF) is founded as an open standardization organization
- **1989**: Foundation of RIPE (Réseaux IP Européens) as a forum for administrative and technical coordination of Internet development
- **1990**: Proposal of a hypertext project at CERN in Geneva by Tim Berners-Lee and Robert Cailliau: cradle of the world wide web¹
- 1995: The specification of IPv6 (as a successor of IPv4) is published by the IETF

Global Success

- 1996: First search engines with a site-scoring algorithm, e.g., Google search
- 1998: Start of the dot-com boom
- 2004: Start of Web 2.0 brought up blogs and RSS as well as services like Facebook or Twitter
- 2007: Apple's iPhone and Android started the "Mobile Revolution"
- 2008: Rise of the Internet of Things (IoT)

Internet growth

• Amount of AS (Autonomous Systems, admin. routing domain)

 $^{^{1}} https://line-mode.cern.ch/www/hypertext/WWW/TheProject.html$

- Doubling every five years (currently, more than 100,000)
- Stable core
- Major growth at the fringe
- Traffic rate
 - Growth rate of about 26% per year estimated
- Users
 - -2021: two third of the world population is "online"
 - More than doubled during the last ten years
 - Strongest growth outside the EU, Japan, and USA

Components and Terms

Purpose of Computer Networks

The general task of a computer network is to enable communication among the participants.

- Resource sharing
 ⇒ assign different tasks to different computers
 ⇒ avoid bottlenecks
- Resource pooling
 ⇒ combine the resources and functionalities of multiple machines
- Resource balancing
 ⇒ increase the availability of the services by redundancy
- \rightarrow increase the availability of the services by reduidancy

Required Components to set up a Computer Network

What do we need for a computer network?

- For setting up and running a computer network, these three components are required:
- 1. ≥ 2 computers with network services running
- The devices are intended to communicate with each other or access shared resources
- A network service provides a service for communication or shared resources usage
- Computers in a network are called hosts
- 2. Transmission medium to send and receive data
- Some sort of a *wire* (e.g., copper or fiber-optic cables)
- For wireless data transmission no physical medium is required
- 3. Network protocols
- Rules that specify, how computers can communicate

Network Services

- A network service provides resources to other devices in the network
- Distinguished by their role:

Server Provides a network service

Client Uses (consumes) a network service

- If each communication partner is server and client both, the participants are called peers (⇒ Peer-to-Peer networks)
- The terms server, client, and peer typically refer only to network services and not to hardware
- Almost any computer that acts as a server will also run client applications

Transmission Media

Different transmission media exists to setup a computer network.

- 1. Guided transmission media
- 2. Wireless transmission
- Copper cable: Data is transferred as electrical impulses
- Fiber-optic cable: Data is transferred as light impulses
- Wireless transmission can be realized directed and undirected
- Directed transmission can base on the following technologies:
 - Radio technology: Electromagnetic waves in the radio frequency spectrum (radio waves) (e.g., directed WLAN and satellite Internet access)
 - Infrared: Electromagnetic waves in the spectral range (e.g., IrDA)
 - -~ Laser: Data is transferred as light impulses via Laser Bridge
- Undirected wireless transmission is mostly based on radio technology (e.g., WLAN, cellular networks, terrestrial broadcasting and satellite broadcasting) or sonar

Protocols

A protocol is the set of all previously made agreements between communication partners, e.g.,

- Rules for connection establishment and termination
- Method of synchronization between sender and receiver (if any)
- Measures for the detection and treatment of transmission errors
- Definition of valid messages (vocabulary)
- Format and encoding of messages
- Protocols specify...
 - the syntax (= format of valid messages)
 - the semantics (= vocabulary and meaning of valid messages)

Different Types of Networks

Can you think of different examples for computer networks?

Computer Networks distinguished by their Dimension (1/2)

- Depending on the dimension, different groups of computer networks are distinguished
- Personal Area Network (PAN) or Body Area Network (BAN)
 - Network of small mobile devices, such as smart phones
 - Dimension: Few meters
 - Technologies: USB, FireWire, WLAN, Bluetooth, IrDA

• Local Area Network (LAN)

- Local network
- Range covers an apartment, building, company site or university campus
- $-\,$ Dimension: 500-1000 m $\,$
- Technologies: Ethernet, Wireless LAN (WLAN)

Computer Networks distinguished by their Dimension (2/2)

- Metropolitan Area Network (MAN)
 - Connects LANs
 - Range covers a city or agglomeration area
 - Dimension: 100 km
 - Technologies: Fiber-optic cables, WiMAX (IEEE 802.16)
 - * Fiber-optic cables are used because of lesser attenuation (signal weakening) and higher data transmission rates
- Wide Area Network (WAN)
 - Connects several networks
 - Range covers a large geographic area inside a country or continent
 - $-\,$ Dimension: 1000 km
 - Technologies: Ethernet (10 Gbit/s), Asynchronous Transfer Mode (ATM)

Communication Modes

- Synchronous ("Rendez-Vous")
 - Sender and receiver needs to be present at the same time
 - May require to wait for the other side to become ready
 - For example, phone calls or video conference
- Asynchronous
 - Sender and receiver may act independently from each other
 - Requires buffering
 - For example, instant messaging or E-Mail

Unicast and Broadcast

Unicast One-to-one communication, i.e., one host sends information to exactly one other host

Broadcast One-to-all communication, i.e., one host sends information to all other hosts in the network

Group Communication: Multicast and Anycast

Multicast Group communication, i.e., one host sends information to all hosts in a given group

Anycast One-to-any communication, i.e., one hosts sends information to one host in a given group

- What are the use cases?
- What are the pros and cons?

Connection-Orientation

Network services may operate connection-oriented or connectionless.

 $connection-oriented \ the \ service \ operates \ stateful$

- comprises three phases: connection establishment, data transfer, and connection termination
- a virtual path between the involved hosts is established
- sequent data is exchanged between the same hosts
- typically used for reliable services

connectionless the service operates stateless

- no path between the involved hosts is established
- typically used for low latency services

Directional Dependence (Anisotropy) of Data Transmission

Given a communication channel with two (or more) endpoints:

- Simplex
 - Only one side of the channel can send data \rightarrow the channel can be used in only one direction
 - Examples: Radio, TV, Pager
- Duplex (Full-duplex)
 - Both sides of the channel are allowed to send → the channel can be used in both directions simultaneously
 Examples: Phone, Networks with twisted pair cables because they provide separate wires for send and receive
- Half-duplex
 - Both sides of the channel can send, but not simultaneously \rightarrow the channel can only be used in one direction at a time
 - Examples:
 - * Networks with fiber-optic cables or coaxial cables, because there exists just a single line to sending and receiving
 - * Wireless networks with just a single channel

Bandwidth, Throughput and Goodput

Main factors, influencing the performance of a computer network:

- Bandwidth $(\rightarrow \text{throughput})$
- Latency (\mathbf{delay})
- The bandwidth specifies how many bits can be transmitted within a period via the network
 - If a network has a bandwidth of 1 Mbit/s, one million bits can be transmitted per second in the ideal case * Thus, a bit has a *width* of 1 μ s
- Throughput is the actual achieved data rate (\Rightarrow the bandwidth defines its upper bound)
- Goodput is the actual rate of data the user benefits from

Latency

The latency of a network is the time, a message needs to travel from one end of the network to the most distant end

Latency = Propagation delay + Transmission delay + Waiting time

 $\label{eq:propagation} Propagation \ delay = \frac{Distance}{Speed \ of \ light * Velocity \ factor}$

- Distance: Length of the network connection
- Speed of light: 299, 792, 458 m/s
- Velocity factor: Vacuum = 1, twisted pair cables = 0.6, optical fiber = 0.67, coaxial cables = 0.77

 $\label{eq:Transmission} \text{Transmission delay} = \frac{\text{Message size}}{\text{Bandwidth}}$

Transmission delay = 0, if the message consists only of a single bit

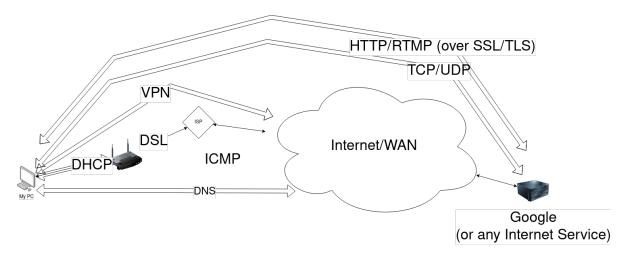
- Waiting times are caused by network devices (e.g., Switches)
 - They need to cache received data first before forwarding it
 - Waiting time = 0, if the network connection between sender and destination is just a single line or a single channel

Source: Larry L. Peterson, Bruce S. Davie. Computernetzwerke. dpunkt (2008)

Bandwidth-Delay Product

- Calculates the volume of a network connection
 - Signals cannot be transmitted with infinite speed via the transmission media
 - * The propagation speed is in any event limited by the speed of light and it depends on the velocity factor of the transmission medium
 - The product of bandwidth and delay (latency) corresponds to the maximum number of bits that can reside inside the line between sender and receiver
- Example: A network with 100 Mbit/s bandwidth, and 10 ms latency

 $100,000,000 \text{ Bits/s} \times 0.01 \text{ s} = 1,000,000 \text{ Bits}$


- There are a maximum number of 1,000,000 Bits inside the network line
 - This is equivalent to 125,000 Bytes (= 125 kB)

How does a Computer Network work?

You need information about someone/something:

- What do you do?
- Which problems are to solve?

The Big Picture

Reference Models

Reference Models

- Reference models are used to describe computer networks independently of concrete technologies
- Such a reference model consists of several layers
- Each layer addresses a particular aspect of communication and offers interfaces to the neighboring layer
- Each layer defines their own protocols that define syntax and semantics of parts of a transmitted message (e.g., header and trailer)
- These message parts are encapsulated
- Because each layer is complete in itself, single protocols can be modified or replaced without affecting all aspects of communication
- The most popular reference models are...
 - the TCP/IP reference model,
 - the ISO/OSI reference model, and
 - the hybrid reference model

Information

translator

Information

for the rer secretary

for the remote

L: Dutch

lk vind

koniine

Fax #-

L: Dutch

vind

"Philosopher-Translator-Secretary"-Architecture

Translator

Secretar

Source: Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

TCP/IP Reference Model or DoD Model

• Developed from 1970 onwards by the Department of Defense (DoD) in the Arpanet project

: Dutch

vind

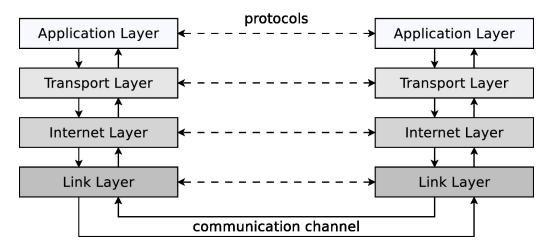
konijnen 2

Fax #-

: Dutch

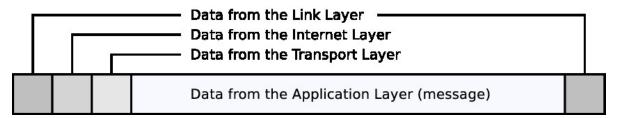
vind onijne uk

- Divides the required functionality to realize communication into 4 layers
- For each layer, it is specified, what functionality it provides


- These requirements are implemented by communication protocols

- * Concrete implementation is not specified and can be implemented in different ways
- * Therefore, for each of the 4 layers, multiple protocols exist

Number	Layer	Protocols (Examples)
4	Application Layer	HTTP, FTP, SMTP, POP3, DNS, SSH, Telnet
3	Transport Layer	TCP, UDP
2	Internet Layer	IPv4, IPv6, IPX
1	Link Layer	Ethernet, WLAN, ATM, FDDI, PPP, Token Ring


Described in RFC 1122 (TCP/IP)

TCP/IP Reference Model – Message Structure

• Each layer adds additional information as header to the message

- Some protocols (e.g., Ethernet) add in the link layer not only a header but also a trailer at the end of the message
- The receiver analyzes the header (and trailer) on the same layer

Hybrid Reference Model

- The TCP/IP reference model is often presented in the literature (e.g., by Andrew S. Tanenbaum) as a 5-layer model
 - Reason: It makes sense to split the Link Layer into 2 layers, because they have different tasks
- This model is an extension of the TCP/IP model and is called hybrid reference model

TCP/IP Reference Model

Hybrid Reference Model

Application Layer	Application Layer	
Transport Layer	Transport Layer	
Internet Layer	Network Layer	
Link Layer	 Data Link Layer	
	 Physical Layer	

OSI Reference Model

- Some years after the TCP/IP reference model (1970s), the OSI (Open Systems Interconnection) reference model was developed from 1979 onwards
- 1983: Standardized by the Intern. Organization for Standardization (ISO)
- In contrast to the hybrid reference model, two additional layers are placed below the Application and above the Transport Layer

TCP/IP Reference Model	Hybrid Reference Model		OSI Reference Model
			Application Layer
		and a start of the second s	Presentation Layer
Application Layer	Application Layer		Session Layer
Transport Layer	Transport Layer		Transport Layer
Internet Layer	Network Layer		Network Layer
Link Layer	 Data Link Layer	[Data Link Layer
	 Physical Layer		Physical Layer

OSI Model Concepts

Central concepts of the OSI model are:

Services Define what the layer does, i.e., its semantics

Interfaces Define how to access it

Protocols Describe how the layer is implemented

Physical Layer I

- Transmits the ones and zeros
 - Physical connection to the network
 - Conversion of data into signals
- Protocol and transmission medium specify among others:
 - How is the information encoded on the transmission medium?
 - Can transmission take place simultaneously in both directions?

Physical Layer II

- At sender site: Signals are modulated onto the medium
- At receiver site: Signals are demodulated from the medium
- Devices: Repeater, Hub (Multiport Repeater)

Data Link Layer I

- Ensures error-free data exchange of frames between devices in physical networks
 - Handles transmission errors with **checksums**
 - Controls the access to the transmission medium (e.g., via CSMA/CD or CSMA/CA)
- Specifies physical network addresses (MAC addresses)

Data Link Layer II

- At sender site: Packs the Network Layer packets into frames and transmits them (in a reliable way) via a physical network from one device to another
- At receiver site: Identifies frames in the bit stream from the Physical Layer
- Devices: Bridges, Layer-2-Switches (Multiport Bridges), WIFI APs, and Modems connect physical networks

Network Layer I

- Forwards packets between logical networks (over physical networks)
 - For this *internetworking*, the network layer defines logical addresses (most commonly IP addresses)
 - Each IP packet is routed independently to its destination (\rightarrow connectionless)

Network Layer II

- At sender site: Packs the segments of the Transport Layer in packets
- At receiver site: Unpacks the packets in the frames from the Data Link Layer
- Routers and Layer-3-Switches connect logical networks
- Usually the connectionless Internet Protocol (IP) is used
 - Other protocols (e.g., IPX) have been replaced by IP

And Briter Construction Cons	Wireless-G Broadband Router With 4-Fort Switch and Moder Mittade	LINKSYS
		T
A Division of Cisco Systems, Inc	Wirele:	
Model No WRT54GL v1.1	With 4-Por	and Router t Switch

Transport Layer I

- Transports segments between processes on different devices via so-called end-to-end protocols
- Transport protocols implement different forms of communication
 - Connectionless communication, typically UDP (User Datagram Protocol) in TCP/IP networks
 - Connection-oriented communication, typically TCP (Transport Control Protocol) in TCP/IP networks

Transport Layer II

- At sender site: Packs the data of the Application Layer into segments
- At receiver site: Unpacks the segments inside the packets from the network layer
- Addresses processes with ${\bf port\ numbers}$

Combination of TCP/IP = de facto standard for computer networks

Session Layer

- Controls the dialogues (connections) between processes
- Provides the following services
 - checkpointing (and recovery)
 - authentication
 - authorization
- Relevant protocols of the Session Layer are H.245, L2TP, PAP, and SOCKS
- Session Layer services are commonly used for RPCs (cf. lecture Distributed Systems)

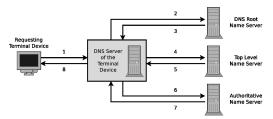
Many network applications do not require a dedicated **session layer** protocol.

Presentation Layer

- Contains rules for setting the format (presentation) of messages
 - The sender can notify the receiver that a message has a specific **format** (e.g., ASCII) to make conversion happen, which is perhaps necessary
 - Data records can be specified here with fields (e.g., name, student ID number...)
 - Data types and their length can be defined here
 - Compression and encryption could be implemented by this layer

The functionality of the **presentation layer** is often implemented as part of the **application layer**.

Application Layer


- Contains all protocols, that interact with the application programs (e.g., browser or email program)
- Here is the actual payload (e.g., HTML pages or emails), formatted according to the used application protocol
- Some Application Layer protocols: HTTP, FTP, SMTP, POP3, DNS, SSH, Telnet

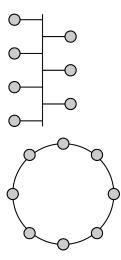
wikipedia.org (CC0)

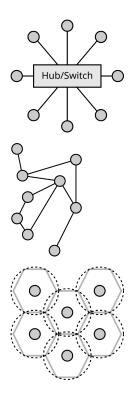
pixabay.com (CCO)

Reference Models – Summary

- The OSI reference model is the most fine granular and is most widely used
- Protocols of the **physical** and the **data link layer** are often highly entangled in practice
- Many network applications do not require dedicated protocols on the session and presentation layer
 - Their functionality is often implemented as part of the **transport** or **application layer**

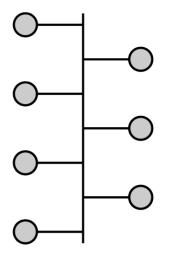
Hybrid Reference Model


OSI Reference Model


			Application Layer
			Presentation Layer
Application Layer	Application Layer		Session Layer
Transport Layer	 Transport Layer		Transport Layer
Internet Layer	Network Layer		Network Layer
Link Layer	 Data Link Layer	[Data Link Layer
	 Physical Layer	[Physical Layer

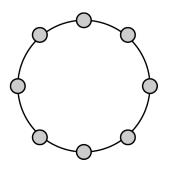
Topologies

Topologies of Computer Networks


- The topology of a computer network...
 - determines how the communication partners are connected with each other
 - affects its reliability a lot
- The structure of large-scale networks is often a combination of different topologies
- Physical and logical topology may differ
 - Physical topology: Describes the wiring
 - Logical topology: Describes the flow of data between the terminal devices
- Topologies are graphically represented with nodes and edges

Bus Network

• All terminal devices are connected via a shared communication medium – the bus

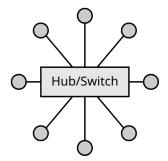


- No active components between the terminal devices and the shared communication cable
 - If a node fails, it does not affect the network itself
- Advantage: Cheap to implement
 - In the past, Hubs and Switches have been expensive

- **Drawback**: Shared communication cable fails ⇒ Complete network fails
- Only a single node can send data at each point in time \implies otherwise, collisions will occur
 - A media access control method like CSMA/CD is required

Examples: (original) Ethernet, CAN, I²C, SPI

Ring Network

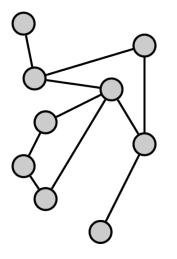


- Connects node to node
- All data is transferred from nodes to nodes until the destination is reached
- Disruption of a single link \Longrightarrow network failure
- Each node is also a repeater, which amplifies the signal
 - $-\,$ For that reason, large-sized rings (transmission medium dependent) are possible
 - Maximum ring length for Token Ring: 800 m

Examples:

- Token Ring (logical): 4-16 Mbps
- Fiber Distributed Data Interface (FDDI): 100-1000 Mbps

Star Network


- All nodes are connected directly with a central component (Hub or Switch)
- Failure of the central component leads to a failure of the network itself
 - $-\,$ The central component can be implemented in a redundant way
- Failure of a node do not cause a failure of the network itself

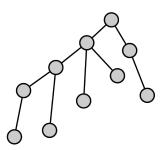
• Advantages: Expandability and stability

Examples:

- (modern) Ethernet
- Token Ring (physical): 4-16 Mbps
- Fibre Channel (storage networks): 2-16 Gbps
- InfiniBand (cluster): 10-40 Gbps

Mesh Network

• Each node is connected with one or more other nodes


- In a fully connected mesh network, the nodes are all connected to each other

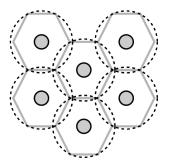
- If nodes or connections fail, communication inside the network is typically still possible because the frames are redirected
- Advantages: Failure safe (depends on the degree)
- Drawbacks: Cabling effort and energy consumption
- Additional challenge: complexity to find the best way from sender to receiver (cf. Travelling salesman problem)

Examples:

- Logical topology between Routers
- Ad-hoc (wireless) networks

Tree Network

- A dedicated root node exist with one or more edges
 - Every edge leads to a leaf node or to the root of another tree
- Several star topology networks are hierarchically connected
- Advantages:
 - Failure of a terminal device (leaf node) has no consequences
 - Good expandability and long distances are possible
 - Well suited for searching and sorting algorithms


• Drawbacks:

- When a node fails, the complete (sub-)tree behind is no longer accessible
- In a large tree, the root may become a bottleneck because the communication from one half of the tree to the other half always needs to pass the root

Examples:

• Connecting Hubs or Switches via an uplink port

Cellular Network

- Implemented by wireless networks
- Cell: Area where the nodes can communicate with the base station
- Advantage: Failure of nodes do not affect the network itself
- Drawback: Maximum dimension is limited by the number of base stations and their positions
- Only one nodes can send data at each point in time \implies otherwise, collisions will occur
 - A media access control method like CSMA/CA is required

Examples:

- Wireless LAN = WiFi (*IEEE 802.11*)
- Global System for Mobile Communications (GSM)

Current Situation

- Today, Ethernet (1-10 Gbit/s) with Switches (\implies star topology) is the standard for wired LAN
- Connecting Hubs and Switches implements a tree topology, if there are no loops in the cabling
- Cell topology is the standard for wireless networks
- Mesh topology is one possible use case of wireless networks and it is the logical topology between routers
- Bus and ring topologies are no longer used for new computer network infrastructures
 - 10BASE2 (Thin Ethernet) and 10BASE5 (Thick Ethernet) are outdated since the mid/end-1990s
 - May 2004: IBM sells its complete Token Ring product lineup

Summary

You should now be able to answer the following questions:

- What is a Computer Network and what are its objectives?
- What is the difference between bandwidth, throughput, and latency?
- What is a reference model and what do their difference layers represent?

