

Distributed Systems Security

Prof. Dr. Oliver Hahm Frankfurt University of Applied Sciences Faculty 2: Computer Science and Engineering oliver.hahm@fb2.fra-uas.de https://teaching.dahahm.de

Introduction

Information Security¹

"Information security [...] is the practice of protecting information by mitigating information risks. [...] It typically involves preventing or reducing the probability of unauthorized/inappropriate access to data, or the unlawful use, disclosure, disruption, deletion, corruption, modification, inspection, recording, or devaluation of information. It also involves actions intended to reduce the adverse impacts of such incidents. Protected information may take any form, e.g. electronic or physical, tangible (e.g. paperwork) or intangible (e.g. knowledge). Information security's primary focus is the balanced protection of the confidentiality, integrity, and availability of data (also known as the CIA triad) while maintaining a focus on efficient policy implementation, all without hampering organization productivity."

- Separation between policy and methods
 - Security policies (Set of rules)
 - Security methods (Mechanisms for enforcement)

¹https://en.wikipedia.org/wiki/Information_security Prof. Dr. Oliver Hahm - Distributed Systems - Security - SS 22

Introduction

Information Security¹

"Information security [...] is the practice of protecting information by mitigating information risks. [...] It typically involves preventing or reducing the probability of unauthorized/inappropriate access to data, or the unlawful use, disclosure, disruption, deletion, corruption, modification, inspection, recording, or devaluation of information. It also involves actions intended to reduce the adverse impacts of such incidents. Protected information may take any form, e.g. electronic or physical, tangible (e.g. paperwork) or intangible (e.g. knowledge). Information security's primary focus is the balanced protection of the confidentiality, integrity, and availability of data (also known as the CIA triad) while maintaining a focus on efficient policy implementation, all without hampering organization productivity."

Separation between policy and methods

- Security policies (Set of rules)
- Security methods (Mechanisms for enforcement)

¹https://en.wikipedia.org/wiki/Information_security Prof. Dr. Oliver Hahm - Distributed Systems - Security - SS 22

Secure Systems

- ... do not exist.
- The completely secure firewall:

http://www.brauwesen-historisch.de/seitenschneider.jpeg

Secure Systems

- ... do not exist.
- The completely secure firewall:

http://www.brauwesen-historisch.de/seitenschneider.jpeg

• An application can be considered secure, if the cost for an attacker are higher than the value of the protected value

Protection goals

- Common protection goals (CIA triad):
 - Confidentiality:

Information can only be accessed by authorized users

Integrity:

Data must not be modified unnoticed

Availability:

Data access is ensured with an agreed quality

- Further protection goals:
 - Authenticity:

Authenticity of a person or a service is verifiable

Non-Repudiation:

The author of any data must be identifiable and cannot repudiate this

Accountability:

Any action can be accounted to a user

Privacy:

Personal attributes must be kept confidential and the anonymity should be preserved if possible

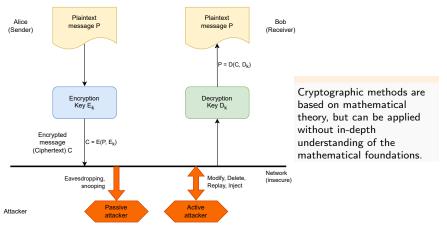
Terms

Authentication:

- Verification of an identity
- \blacksquare Mutual authentication of communication peers is required, e.g., user \leftrightarrow computer

Authorisation:

- Have and exercise permissions
- Security models


 Discretionary Access Control Access matrix as abstract model Method: Capabilities, Access Control Lists (ACLs)
Mandatory Access Control

Cryptography

Practise of techniques for secure communication

Base model:

Threats

STRIDE Model

- S poofing 🛶 Authenticity
- T ampering 🛶 Integrity
- R epudiation 🟎 Non-repudiability
- 🛛 nformation disclosure 🟎 Confidentiality
- D enial of Service 🖛 Availability
- E levation of Privilege 🛶 Authorization

Threat Examples

- Faulty specification of security policies
- Fault design or specification of components
- Faulty configuration
- Faulty code
- Weak cryptographic methods
- Exploiting insider information
- "'Social Engineering"'
- Eavesdropping
- Denial-of-Service attacks
 - e.g., by generating a very high load
 - Prevention of exercising a certain right
- Theft of keys or masquerading (faking an identity)
- Active modification, deletion, or replay of messages
- Injection or infiltration of messages, emails, viruses, worms, Trojan horses . . .

Risk Assessment

https://iso25000.com/images/figures/en/iso25010.png

- May conflict with other characteristics of software quality
- Effort-benefit must be weighed
- Per threat:
 - Potential damage (life and limb, property damage, reputation)
 - Probability of occurrence
 - Probability of detection of occurrence
- The higher the risk, the more important the consideration as part of the security policy

1 Cryptographic Concepts

- Encryption Methods
- Cryptographic Hash Functions

- Authentication
- Digital Signatures
- Key Management

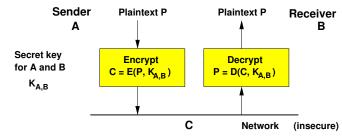
1 Cryptographic Concepts

- Encryption Methods
- Cryptographic Hash Functions

- Authentication
- Digital Signatures
- Key Management

1 Cryptographic Concepts

Encryption Methods


Cryptographic Hash Functions

- Authentication
- Digital Signatures
- Key Management

Symmetrical Encryption

- a secret key for encryption and decryption
- requires a secure channel for key distribution
- Advantages:
 - short key sizes (symmetrical keys of at least 128 bit length are considered today)
 - low computational cost (fast)
- Problems:
 - Key Management
 - Repudiable

Symmetrical Encryption

Block algorithms

- Encryption of data of fixed length, e.g., 64 bit
- Alternatives:
 - Electronic Code Book
 - all blocks are encrypted independently from each other
 - Cipher Block Chaining
 - Encryption is chained with the previous encrypted block via an $\underset{\ensuremath{\mathsf{XOR}}}{\ensuremath{\mathsf{NOR}}}$ operation

Stream Algorithms

- Bit or byte stream oriented
- typically very fast, but missing standardization

Examples:

- DES Data Encryption Standard (US) historically most widespread representative
- Triple-DES, IDEA, AES
- RC4 (Stream Algorithm)

Asymmetric Encryption (public key encryption)

- A pair of keys is required (private and public key)
 - different keys for encryption and decryption \rightarrow Hence the name "'asymmetric"'
 - Assumption: the secret can not be derived from the public key or the method with realistic computational costs

Advantages:

- \blacksquare No secrete channel for key distribution required \rightarrow the secret key gets never transmitted
- Public keys can easily be distributed using directory services
- Non-repudiation is possible

Drawbacks:

- rather long keys are required (\rightarrow currently at least 2048 bit are recommended)
- high computational cost
- Reliable key management is required

Examples Asymmetric Encryption

Representatives

- RSA Algorithm
 - Rivest, Shamir, Adelman: 1978
 - \blacksquare based on prime factorization of big numbers \rightarrow computational hard one-way problem

Diffie-Hellman

- Establishing secure connections from an unsecure state (without authentication)
- Elliptic Curve Cryptography (ECC)
 - based on rather modern mathematical methods
 - allows smaller keys with equivalent security
 - especially suited for resource constrained devices

Typical Use Cases

Asymmetric Encryption

- Authentication
- Digital signatures
- Key management

Symmetrical Encryption

- fast encryption of a bigger amount of data
- ⇒ Asymmetric methods are used to negotiate keys for subsequent symmetrical encryption (Session Key)

1 Cryptographic Concepts

- Encryption Methods
- Cryptographic Hash Functions

- Authentication
- Digital Signatures
- Key Management

Cryptographic Hash Functions

- \blacksquare Calculating a digital fingerprint for documents or messages \rightarrow message digest
- Basis for digital signatures
- Hash function H
 - h = H(P)
 - Message P of arbitrary length
 - h Sequence of bits of fixed length (e.g., 128 bit)
 - cf. CRC
- Assumptions
 - Calculation of H is easy
 - The reverse operation, i.e., determining the original message for a given hash value is computational hard (→ one-way function)
 - Any change to the message P results in a different hash value (h)
- Examples:
 - MD5 (not considered secure anymore)
 - SHA-0, SHA-1, SHA-2, SHA-3

Prof. Dr. Oliver Hahm - Distributed Systems - Security - SS 22

1 Cryptographic Concepts

- Encryption Methods
- Cryptographic Hash Functions

- Authentication
- Digital Signatures
- Key Management

1 Cryptographic Concepts

- Encryption Methods
- Cryptographic Hash Functions

- Authentication
- Digital Signatures
- Key Management

Authentication

Authenticity and Integrity

Authentication and message integrity are not separable from each other

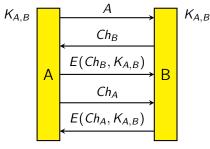
- What use is authenticity if the message can be changed?
- What use is message integrity if its sent by anyone else?

Authentication

Authenticity and Integrity

Authentication and message integrity are not separable from each other

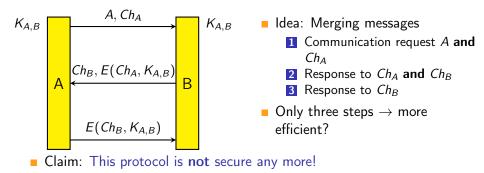
- What use is authenticity if the message can be changed?
- What use is message integrity if its sent by anyone else?


Procedure

- **1** First, setup of a secure channel with mutual authentication
- 2 Next, use a secret session key to ensure integrity (and confidentiality)

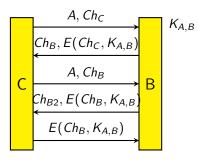
Authentication with Secret Keys

Principle of a Challenge-Response-Protocol


 $K_{A,B}$: common secret key

- Communication request *A*, contains the identity of *A*
- Challenge Ch_B (e.g., random number) posed by B
- *B* can check if the response contains Ch_B (\rightarrow only *A* can be the communication partner)
 - analog in the reverse direction (→ only *B* can be the communication partner)
- Problem: Management of many secret keys
- \rightarrow Key Distribution Center (KDC) may be used

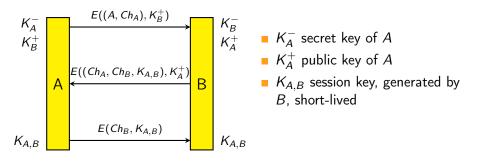
On the Design of Secure Protocols (1/2)


- The design of a secure protocol is error-prone!
- Example: Seemingly simplified challenge-response-protocol

On the Design of Secure Protocols (2/2)

Reflection attack: Attacker C, not knowing the secret $K_{A,B}$

- C starts a first session and retrieves Ch_B
- C starts a second session using Ch_B as alleged own challenge
- C retrieves Ch_B encrypted with $K_{A,B}$: $E(Ch_B, K_{A,B})$
- *C* uses this to continue the first session


Result: *B* trusts *C*, even though *C* does not know the common secret $K_{A,B}$

Authentication with Public Keys

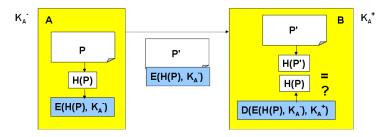
Principle

- No KDC required
- Attribution of the public keys to the real persons must be ensured

1 Cryptographic Concepts

- Encryption Methods
- Cryptographic Hash Functions

- Authentication
- Digital Signatures
- Key Management


Digital Signatures

- Comparable to a physical signature
 - Must not be detachable from the signed document
 - Not (easily) forgeable
- Signature provides reliable determination of
 - Authorship
 - Non repudiation
 - Integrity
 - Authenticity
- ... but does not protect the confidentiality of the message
 - → Requires encryption
- Combination of ...
 - Hash Algorithm
 - Public Key Infrastructure

Procedure

- Sign the message by encrypting the hash value of a message with the private key
- The public key can be used by the receiver to verify the validity of the signature

Procedure

- **1** Alice (A) is the sender and Bob (B) the receiver of a message
- 2 Alice uses the hash algorithm H on the plaintext message P to create a hash value $V_A = H(P)$
- 3 Alice encrypts the hash value V_A with her private key K_A^-

$$VC_A = E(V_A, K_A^-)$$
 (=Signature)

- 4 The encrypted hash value is appended on the (unencrypted) message and transmitted along with the message
- **5** Bob decrypts VC_A using Alice's public key K_A^+

 $V = D(VC_A, K_A^+)$

6 Determination of the hash value of message *P*:

 $V_B = H(P)$

 $V = V_B$?

if yes: Signature is authentic and the message has not been modified

Prof. Dr. Oliver Hahm – Distributed Systems – Security – SS 22

1 Cryptographic Concepts

- Encryption Methods
- Cryptographic Hash Functions

- Authentication
- Digital Signatures
- Key Management

Key Management

Goal

- Secure and efficient life cycle management for keys
 - Generation/setup
 - Distribution
 - Revocation
- Trust in key management is mandatory!
- Different approaches
 - When working with secret keys: Key Distribution Center (KDC)
 - When working with public keys: Public Key Infrastructure (PKI)
 - \rightarrow Anything but trivial!

PKI Systems

- Main problem:
 - Secure distribution of public keys
 - Man-in-the-Middle (MitM) attack during key exchange is possible
- Basis
 - Certificates
 - Authenticity of public keys
 - Directory services
 - Lookup for public keys
 - e.g., LDAP (Lightweight Directory Access Protocol)

Certificates

Certificates

- Are used to confirm the authenticity of a public key
- \Rightarrow Confirm the affiliation to a certain entity (person, service, organization ...)

Certification Authority (CA)

- Issuing authority
- Ensures the ownership of an key
- Trustworthiness is required or the public of the CA must be certified itself by a higher CA
- Controlled by central entity (root CA) which certifies the public keys of CA (\rightarrow chain of trust)
- Certification Revocation List (CRL)
 - Contains serial numbers of certificates which became invalid (have been revoked)

X.509 Standard for Certificates

- Versions: v1-v3
- Essential information of a certificate:
 - Version
 - Public key of the certificate owner
 - Distinguished Name (of the owner)
 - Common Name, CN
 - Organization, O
 - Organizational Unit, OU
 - Locality, L
 - State, ST
 - Country, C
 - Name and country of the issuing CA (Distinguished Name)
 - Validity period
 - Used algorithms
 - Extensions

Important takeaway messages of this chapter

- An 100% secure system does not exist → security is always a tradeoff
- Security measures are often implemented via cryptographic methods
- Encryption and authentication are the foundation for every security concept

