
Distributed Systems

Distributed Systems
Remote Invocation

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences

Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

13.05.2024

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 1/39

https://teaching.dahahm.de

Distributed Systems

How can we achieve access

transparency?

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 2/39

Distributed Systems

Agenda

1 Motivation

2 Basic Principles

3 Binding

4 Error Handling

5 RPC Systems

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 3/39

Distributed Systems

Motivation

Agenda

1 Motivation

2 Basic Principles

3 Binding

4 Error Handling

5 RPC Systems

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 4/39

Distributed Systems

Motivation

Motivation

Message oriented communication

asynchronous exchange of messages
explicitly via send() and receive() operations
Summary

+ very flexible, all communication patterns possible
- explicit, I/O paradigm

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 5/39

Distributed Systems

Motivation

Motivation

Message oriented communication

asynchronous exchange of messages
explicitly via send() and receive() operations
Summary

+ very flexible, all communication patterns possible
- explicit, I/O paradigm

Goal of remote invocation

Communication transparency
Appears like an usual local procedure call

→ Remote Procedure Call

Supports . . .

Service orientation → Service = Set of functions
RPC for calling the functions
Object orientation → Remove Method Invocation (RMI)

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 5/39

Distributed Systems

Motivation

History

First comprehensive presentation:

Dissertation Nelson (1981, XPARC)
Derived Paper Birrel/Nelson (1984, ACM ToCS)

Definition:

RPC as a synchronous mechanism “which transfers control flow and
data as a procedure call between two [separated] address spaces over
a narrowband network.”

Nelson’s Thesis:

RPC is an efficient concept for implementing distributed applications
RPC facilitates the development of distributed systems

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 6/39

Distributed Systems

Motivation

History

First comprehensive presentation:

Dissertation Nelson (1981, XPARC)
Derived Paper Birrel/Nelson (1984, ACM ToCS)

Definition:

RPC as a synchronous mechanism “which transfers control flow and
data as a procedure call between two [separated] address spaces over
a narrowband network.”

Nelson’s Thesis:

RPC is an efficient concept for implementing distributed applications
RPC facilitates the development of distributed systems

Today:

Nelson’s vision has been widely accepted
Many produces work on RPC systems
Typical examples: SunRPC and NFS, OSF DCE RPC, Apache Thrift,
D-Bus

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 6/39

Distributed Systems

Basic Principles

Agenda

1 Motivation

2 Basic Principles

3 Binding

4 Error Handling

5 RPC Systems

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 7/39

Distributed Systems

Basic Principles

Main Principle

server

stub

client

stubprocedure

client
procedure

server

work

work

pack args

send
work

OS core OS core

Client Host (address space) Server Host (address space)

call

return

receive

unpack results

receive
unpack args

call

send

pack results

return

p
ro

c
e
s
s

p
ro

c
e
s
s

transmit

transmit

pack/unpack = marshalling/unmarshalling
Proxy components: stub, proxy, skeleton

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 8/39

Distributed Systems

Basic Principles

Application Development (high level)

Coarse structure:

Interface-
specification

Client-
development

Server-
development

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 9/39

Distributed Systems

Basic Principles

Application Development (Zoom in)

more detailed, but still independent of the particular RPC system:

interface
specification

Interface
Compiler

Header
Files

Client
Stub

Server
Stub

RPC
library

Client
application

RPC
library

Server
application

Compile
& Link

Compile
& Link

Client
application

Server
application

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 10/39

Distributed Systems

Basic Principles

Application Development (Zoom in)

more detailed, but still independent of the particular RPC system:

interface
specification

Interface
Compiler

Header
Files

Client
Stub

Server
Stub

RPC
library

Client
application

RPC
library

Server
application

Compile
& Link

Compile
& Link

Client
application

Server
application

by the application
developer

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 10/39

Distributed Systems

Basic Principles

Example: SunRPC

RPC language
foo.x

Interface
Compiler: rpcgen

Header foo.h

Files foo_xdr.c
Client

Stub: foo_clnt.c

Server
Stub: foo_svc.c

RPC
Library

Client-
Program

RPC
Library

Server-
Program

Compile
& Link

Compile
& Link

Client
application

Server
application

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 11/39

Distributed Systems

Basic Principles

Interface Description

Which information needs to be

included in the interface
de

script
ion?

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 12/39

Distributed Systems

Basic Principles

Example: Interface Description SunRPC (1)

const MAX_FILENAME_LEN = 255;

typedef string t_filename <MAX_FILENAME_LEN >;

const MAX_CONTENT_LEN = 255;

typedef string t_content <MAX_CONTENT_LEN >;

struct s_filewrite {

t_filename filename;

t_content content;

};

struct s_chmod {

t_filename filename;

long mods;

};

struct s_fstat {

long dev;

long ino;

long mode;

long nlink;

long uid;

long gid;

long rdev;

long size;

long blksize;

long blocks;

long atime;

long mtime;

long ctime;

};
Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 13/39

Distributed Systems

Basic Principles

Example: Interface Description SunRPC (2)

program fileservice {

version fsrv {

int fsrv_mkdir(string) = 1;

int fsrv_rmdir(string) = 2;

int fsrv_chdir(string) = 3;

int fsrv_writefile(s_filewrite) = 4;

string fsrv_readfile(string) = 5;

s_fstat fsrv_fileattr(string) = 6;

int fsrv_chmod(s_chmod) = 7;

} = 1;

} = 0x30000001;

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 14/39

Distributed Systems

Basic Principles

Example: Interface Description DCE

[uuid(5ab2e9b4 -3d48 -11d2 -9ea4 -80 c5140aaa77),

version (1.0) , pointer_default(ptr)

]

interface echo {

typedef [ptr , string] char * string_t;

typedef struct {

unsigned32 argc;

[size_is(argc)] string_t argv [];

} args;

boolean ReverseIt(

[in] handle_t h,

[in] args* in_text ,

[out] args** out_text ,

[out ,ref] error_status_t* status

);

}

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 15/39

Distributed Systems

Basic Principles

Example: Interface Description Thrift

typedef i32 MyInteger

enum Operation { ADD = 1,

SUBTRACT = 2,

MULTIPLY = 3,

DIVIDE = 4

}

struct Work {

1: MyInteger num1 = 0,

2: MyInteger num2 ,

3: Operation op,

4: optional string comment ,

}

exception InvalidOperation { 1: i32 what , 2: string why }

service Calculator {

void ping(),

i32 add (1: i32 num1 , 2:i32 num2),

i32 calculate (1:i32 logid , 2:Work w)

throws (1: InvalidOperation ouch),

oneway void quit()

}

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 16/39

Distributed Systems

Binding

Agenda

1 Motivation

2 Basic Principles

3 Binding

4 Error Handling

5 RPC Systems

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 17/39

Distributed Systems

Binding

Binding

Binding

Problem: Binding of a client to a server is mandatory
Problem exists for other paradigms as well
Aspects: Naming & Locating

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 18/39

Distributed Systems

Binding

Binding

Binding

Problem: Binding of a client to a server is mandatory
Problem exists for other paradigms as well
Aspects: Naming & Locating

⇒ Naming

How does the client specify what it wants to be bound to (→ service)
Interface names are structured in a system wide namespace

Extending this concept by interface attributes → Trading
→ Directory and name services

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 18/39

Distributed Systems

Binding

Binding

Binding

Problem: Binding of a client to a server is mandatory
Problem exists for other paradigms as well
Aspects: Naming & Locating

⇒ Naming

How does the client specify what it wants to be bound to (→ service)
Interface names are structured in a system wide namespace

Extending this concept by interface attributes → Trading
→ Directory and name services

⇒ Locating

Determine the (location dependent) address of a server which exports
the desired interface and can be used for the service
often: IP address of the host and port number

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 18/39

Distributed Systems

Binding

Locating Types

Static address as part of the application

Benefit: requires no search process
Drawback: often not flexible enough

⇒ binding too early

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 19/39

Distributed Systems

Binding

Locating Types

Static address as part of the application

Benefit: requires no search process
Drawback: often not flexible enough

⇒ binding too early

Search for exporting servers at runtime, e.g., via broadcast

Benefit: very flexible
Drawback: increased runtime
Drawback: Broadcasting across subnet boundaries is not desirable

⇒ binding too late

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 19/39

Distributed Systems

Binding

Locating Types

Static address as part of the application

Benefit: requires no search process
Drawback: often not flexible enough

⇒ binding too early

Search for exporting servers at runtime, e.g., via broadcast

Benefit: very flexible
Drawback: increased runtime
Drawback: Broadcasting across subnet boundaries is not desirable

⇒ binding too late

Manage binding information via intermediary instance

Mediating instance is called binder, trader, or broker
Exporting server registers interface (along with all attributes)
Binding request of an importing client causes assignment by the binder

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 19/39

Distributed Systems

Binding

Basic Procedure

Client
client

stub
1

2

3

Binder/

Trader

Server

1 Exporting the interface

Register the interface
at binder
Binder has known
address

2 Importing

At first use of the
service from stub
Provides handle with
address

3 Remote invocation

Client stub uses the
address for the call to
server

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 20/39

Distributed Systems

Binding

Binder/Trader

Typical interface

Register(service name, version, address[, attributes])
Deregister(services name, version, address)
Lookup(name, version[, attributes]) ⇒ address

Advantages:

Very flexible
Works with multiple servers of the same type
Basis for load balancing between equivalent servers

Drawbacks:

Additional effort for exporting and importing of a services is required
Can be problematic with short-lived servers and clients

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 21/39

Distributed Systems

Binding

Example: SunRPC

Names

Pairs (Program number, version number)

Addresses

Pairs (IP address of host, port number)

Binder: Portmapper

Mapping from names to port numbers
IP address of host must be known → the portmapper located there will
be used
The portmapper itself is a SunRPC service (port 111)

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 22/39

Distributed Systems

Binding

Example: DCE RPC

Names

UUID (Universal Unique Identifier)
Worldwide unique string
Generated by the tool uuidgen

Addresses

Pairs (IP address of host, port number)

Binding

Two-tiered within a DCE cell
No additional knowledge required
Binder is called RPC daemon

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 23/39

Distributed Systems

Binding

Example: DCE RPC (2)

Client

Server

@Port P

1

2

3

4

56

CDS

rpcd

"Node A"

"interface xx?"

poss. global search

"Port P"

"interface xx?"

callreply

RPC

Daemon

@ Node A

Service

Directory

Cell

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 24/39

Distributed Systems

Error Handling

Agenda

1 Motivation

2 Basic Principles

3 Binding

4 Error Handling

5 RPC Systems

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 25/39

Distributed Systems

Error Handling

Error Problem

Local function call:

→ Caller and callee are aborted simultaneously

RPC:

→ Failure of single components in a distributed environment is possible

Additional error cases caused by the messaging system itself need to be
considered

Message loss
Unknown transmission times
Out of order delivery of messages

Different RPC systems implement different error semantics

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 26/39

Distributed Systems

Error Handling

RPC Error Semantics: at-least-once

at-least-once semantics

successful execution of the RPC
⇒ called procedure is executed at least once,
i.e., multiple executions may happen
Can cause arbitrary effects in an error case
In general, only suited for idempotent operations, i.e., multiple
executions do not change state and result

Implementation

Most simple form
If the client does not receive a result in time, the call is repeated by the
stub (→ timeout)
No precautions on the server are are necessary

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 27/39

Distributed Systems

Error Handling

What is an idempotent opera

tion?

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 28/39

Distributed Systems

Error Handling

RPC Error Semantics: at-most-once

at-most-once semantics

Successful execution of the RPC
⇒ Called procedure gets executed exactly once
Unsuccessful execution of the RPC
⇒ Called procedure gets never executed
No partial error effects can be left behind

Implementation

More complex
Requires duplicate detection

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 29/39

Distributed Systems

Error Handling

How can one implement dupli

cate detection?

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 30/39

Distributed Systems

Error Handling

RPC Error Semantics: exactly-once

exactly-once semantics

Successful execution of the RPC
⇒ Called procedure is executed exactly once

Implementation

Very complex

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 31/39

Distributed Systems

Error Handling

Orphan Problem

Problem: The client dies after calling an RPC

Generated call may cause further activities even though no one is
waiting for it any more

After restart responses from a former life may be received

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 32/39

Distributed Systems

Error Handling

Orphan Problem

Problem: The client dies after calling an RPC

Generated call may cause further activities even though no one is
waiting for it any more

After restart responses from a former life may be received

Solutions:

Extermination: Targeted abort of orphaned RPCs based on stable
memory

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 32/39

Distributed Systems

Error Handling

Orphan Problem

Problem: The client dies after calling an RPC

Generated call may cause further activities even though no one is
waiting for it any more

After restart responses from a former life may be received

Solutions:

Extermination: Targeted abort of orphaned RPCs based on stable
memory
(Gentle) Reincarnation: Introduce epochs on client side

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 32/39

Distributed Systems

Error Handling

Orphan Problem

Problem: The client dies after calling an RPC

Generated call may cause further activities even though no one is
waiting for it any more

After restart responses from a former life may be received

Solutions:

Extermination: Targeted abort of orphaned RPCs based on stable
memory
(Gentle) Reincarnation: Introduce epochs on client side
Expiration: RPCs are extended by timeouts

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 32/39

Distributed Systems

RPC Systems

Agenda

1 Motivation

2 Basic Principles

3 Binding

4 Error Handling

5 RPC Systems

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 33/39

Distributed Systems

RPC Systems

RPC Protocol

RPC protocol: rules for processing of RPCs

Depends on the underlying transport system
Datagram service (e.g., UDP)

+ resource-efficient, low latency
- Duplicates (via timeouts), permutations and loss are possible

Reliable transport service (e.g., TCP)

+ Less error causes on the upper layers
- Potentially possible performance reducing

⇒ The selection happens dependent on the service requirement

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 34/39

Distributed Systems

RPC Systems

Example: SunRPC

Also: Open Network Computing (ONC) RPC

Embedding in the C language

Underlying transport service:
TCP or UDP
Does not add any reliability enhancing measures
⇒ UDP plus timeouts on the application layer can be used for a

at-least-once semantics
⇒ TCP and message transaction IDs on the application layer can be used

for a at-most-once semantics

Binding via portmapper
Portmapper protocol itself is based on RPC

Parameters
only call-by-value

Security
Authentication: Null, UNIX, DES

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 35/39

Distributed Systems

RPC Systems

Example: SunRPC

Also: Open Network Computing (ONC) RPC

Embedding in the C language

Underlying transport service:
TCP or UDP
Does not add any reliability enhancing measures
⇒ UDP plus timeouts on the application layer can be used for a

at-least-once semantics
⇒ TCP and message transaction IDs on the application layer can be used

for a at-most-once semantics

Binding via portmapper
Portmapper protocol itself is based on RPC

Parameters
only call-by-value

Security
Authentication: Null, UNIX, DES, RPCSEC_GSS

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 35/39

Distributed Systems

RPC Systems

OSF DCE/RPC

Part of the OSF Distributed Computing Environments

Foundation of Microsoft’s DCOM and ActiveX

Embedding for C/C++

Multiple semantics possible (at-most-once as default)

Arbitrary parameter types

→ long parameters via pipe mechanism

Security is based on the Kerberos framework

Relevancy has decreased

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 36/39

Distributed Systems

RPC Systems

Modern RPC system: Apache Thrift

Apache Thrift project (http://thrift.apache.org/)

Origins at Facebook, published in 2007
Supports all common programming languages
Simple Thrift IDL
IDL Compiler generates client and server stubs
Multiple server architectures available:

TNonBlockingServer

TThreadedServer

TThreadPoolServer

TForkingServer

. . .

Multiple protocols and transports can be configured
Protocols: binary and text based (like JSON)
⇒ low overhead
Transports: Tsocket, TMemoryTransport, . . .

Well-known users

Facebook, last.fm, Pinterest, Uber, NSA

Input

Code

Service
client

write()/

read()

TProtocol

TTransport

Input/
output

Input

Code

Service
client

read()/

write()

TProtocol

TTransport

Input/
output

G
e

n
e

r
a

te
d

 C
o

d
e

Client Server

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 37/39

http://thrift.apache.org/

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency

Location transparency

Migration transparency

Failure transparency

Concurrency transparency

Replication transparency

Performance transparency

Scaling transparency

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency
Yes, the same operation gets executed

Location transparency

Migration transparency

Failure transparency

Concurrency transparency

Replication transparency

Performance transparency

Scaling transparency

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency
Yes, the same operation gets executed

Location transparency
Yes, via the locating

Migration transparency

Failure transparency

Concurrency transparency

Replication transparency

Performance transparency

Scaling transparency

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency
Yes, the same operation gets executed

Location transparency
Yes, via the locating

Migration transparency
Yes, via the naming service

Failure transparency

Concurrency transparency

Replication transparency

Performance transparency

Scaling transparency

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency
Yes, the same operation gets executed

Location transparency
Yes, via the locating

Migration transparency
Yes, via the naming service

Failure transparency
Maybe, depends on the used error semantics
Concurrency transparency

Replication transparency

Performance transparency

Scaling transparency

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency
Yes, the same operation gets executed

Location transparency
Yes, via the locating

Migration transparency
Yes, via the naming service

Failure transparency
Maybe, depends on the used error semantics
Concurrency transparency
No

Replication transparency

Performance transparency

Scaling transparency

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency
Yes, the same operation gets executed

Location transparency
Yes, via the locating

Migration transparency
Yes, via the naming service

Failure transparency
Maybe, depends on the used error semantics
Concurrency transparency
No

Replication transparency
Sometimes
Performance transparency

Scaling transparency

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency
Yes, the same operation gets executed

Location transparency
Yes, via the locating

Migration transparency
Yes, via the naming service

Failure transparency
Maybe, depends on the used error semantics
Concurrency transparency
No

Replication transparency
Sometimes
Performance transparency
No

Scaling transparency

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

RPC Systems

Transparency of RPC Systems

Access transparency
Yes, the same operation gets executed

Location transparency
Yes, via the locating

Migration transparency
Yes, via the naming service

Failure transparency
Maybe, depends on the used error semantics
Concurrency transparency
No

Replication transparency
Sometimes
Performance transparency
No

Scaling transparency
For RMI yes, by the object orientation, for other RPCs sometimes

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 38/39

Distributed Systems

Summary

Important takeaway messages of this
chapter

RPCs provide a possibility to call
functions on a remote host as if this
would happen locally

Important elements of an RPC system
are the IDL, its compiler, and the
binder

Multiple error semantics exist which
can be handled below or on top of the
RPC system

Prof. Dr. Oliver Hahm – Distributed Systems – Remote Invocation – SS 24 39/39

	Motivation
	Basic Principles
	Binding
	Error Handling
	RPC Systems

