
Distributed Systems

Distributed Systems
Distributed File Systems

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

03.06.2024

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 1/76

https://teaching.dahahm.de


Distributed Systems

Data Storage

How can we store data on a

computer?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 2/76



Distributed Systems

Data Storage Systems

File systems
Database

systems

Object

management

systems

Content universal
mass data of a
few structural
types

focus on
relationships

Stored

information
passive passive active

Semantics

defining

code

external external
internal
(via types)

access

by name,
simple
navigation

complex
associative
search functions

complex search
and navigation
functions

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 3/76



Distributed Systems

Challenges

Which challenges does any file

system need to tackle
?

Which functionalities need to

be provided?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 4/76



Distributed Systems

Models of File Systems

Files as a classical abstraction in operating systems
Historical development considered in the following

1 computer, 1 user, 1 process

Problems to solve:

Structure of the file system
Naming
Programming interface
Mapping to physical memory
Integrity

Examples

PC-DOS
classic MacOS

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 5/76



Distributed Systems

More Challenges

Which
additio

nal challenges

arise
due to multiple

processes

and multiple
users?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 6/76



Distributed Systems

Models of File Systems (2)

Source: Wikipedia

1 computer, 1 user, multiple processes

Additional problems

Concurrency control

Examples

OS/2

1 computer, multiple users, multiple processes

Additional problems

Security and access control

Examples

UNIX

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 7/76



Distributed Systems

Distributed Challenges

Which
additio

nal challenges

arise
when files are stored

in a distrib
uted manner?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 8/76



Distributed Systems

Distributed File Systems

multiple computers, multiple users, multiple processes

Additional problems
Distributedness

Visible overall structure
Access model
Location
Replication
Availability
. . .

No access to shared block
memory of nodes → shared
nothing

Client/Server model

Dedicated file server

Peer-to-Peer model

Everyone can provide files

Sharing common hard disks between nodes will be considered at the end of this lecture (→
Storage Area Networks (SAN))

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 9/76



Distributed Systems

Historical Predecessors

Complete separation

Only local access

File transfer between isolated file systems
(download/upload model)

Example: UNIX uucp, ftp, rcp, scp

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 10/76



Distributed Systems

Historical Predecessors

Complete separation

Only local access

File transfer between isolated file systems
(download/upload model)

Example: UNIX uucp, ftp, rcp, scp

Early distributed file systems (adjunct file systems)

Access to remote files

Explicitly addressing the file’s location as part of its name

Example: Newcastle Connection

machine1 machine3

local

file systems

virtual super directory /machine1/<localpath>

machine2!<localpath>

/../machine3/<localpath>

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 10/76



Distributed Systems

Distributed file system

Definition

A distributed file system provides a unified file system to the users on all
hosts of a network.

Which types of transparency

are possible?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 11/76



Distributed Systems

Distributed file system

Definition

A distributed file system provides a unified file system to the users on all
hosts of a network.

Possibly types of transparency:

Location transparency

Access transparency

Replication transparency

. . .

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 11/76



Distributed Systems

Distributed file system

Definition

A distributed file system provides a unified file system to the users on all
hosts of a network.

Possibly types of transparency:

Location transparency

The file name does not contain any
location information

Access transparency

Replication transparency

. . .

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 11/76



Distributed Systems

Distributed file system

Definition

A distributed file system provides a unified file system to the users on all
hosts of a network.

Possibly types of transparency:

Location transparency

The file name does not contain any
location information

Access transparency

Common API for local and remote files

Replication transparency

. . .

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 11/76



Distributed Systems

Typical Design Goals

High degree of transparency

→ previous slide

Performance

Comparable to local access

High availability and failure tolerance

Security

Scalability

Support for mobile nodes with temporary disconnectivity

Support for shared disk and shared nothing nodes

Cloud connection

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 12/76



Distributed Systems

Backup and Disaster Recovery

Backup

Describes the process of duplicating data to a remote location in order to provide an
alternative source for the data in case the primary source becomes unavailable.

Disaster Recovery

Describes the entire process to safeguard against various types of problems and restore it
in the case of an failure. Backups are an essential part of disaster recovery.

Various ways to manage remote data for disaster recovery

Backup via file transfer (e.g., rsync)

Synchronization via a cloud backend (e.g., Nextcloud or Dropbox)

Use of a version control system (e.g., Subversion or git)

Distributed file systems themselves do not provide a backup per se.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 13/76



Distributed Systems

Exemplary Solutions

Network File System (NFS) — since 1985

Andrew File System (AFS) + Coda — since 1985

Common Internet File System (CIFS) + Server Message Block (SMB)

GlusterFS (Gluster Inc. → Red Hat 2011)

IBM General Parallel File System (GPFS) (ursprünglich Cluster File
System, weiterentwickelt)

Google File System (GFS)

Apache Hadoop

. . .

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 14/76



Distributed Systems

Implementation

How could we implement a dis

tribut
ed file system?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 15/76



Distributed Systems

Typical API

Typical file system API calls comprise. . .

open

close

read

write

mkdir

rmdir

lookup

getattribute

setattribute

link

unlink

. . .
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 16/76



Distributed Systems

Agenda

1 Basics

2 NFS

3 AFS and Coda

4 Storage Networks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 17/76



Distributed Systems

Basics

Agenda

1 Basics

2 NFS

3 AFS and Coda

4 Storage Networks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 18/76



Distributed Systems

Basics

Access Consistency Problem

(a): Modifications are immediately visible for
everyone

(a)

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 19/76



Distributed Systems

Basics

Access Consistency Problem

(a): Modifications are immediately visible for
everyone

(b): Visible values may be outdated

(a)

(b)

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 19/76



Distributed Systems

Basics

Semantics

Strict Consistency

Modifications are immediately visible for everyone
Example: local UNIX

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 20/76



Distributed Systems

Basics

Semantics

Strict Consistency

Modifications are immediately visible for everyone
Example: local UNIX

Session Semantics

Updates the file on closing
Allows local cache as long as the file is opened
Example: Andrew File System

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 20/76



Distributed Systems

Basics

Semantics

Strict Consistency

Modifications are immediately visible for everyone
Example: local UNIX

Session Semantics

Updates the file on closing
Allows local cache as long as the file is opened
Example: Andrew File System

Read-Only Files

Modifications are not possible
Common use and replicate are significantly simplified

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 20/76



Distributed Systems

Basics

Semantics

Strict Consistency

Modifications are immediately visible for everyone
Example: local UNIX

Session Semantics

Updates the file on closing
Allows local cache as long as the file is opened
Example: Andrew File System

Read-Only Files

Modifications are not possible
Common use and replicate are significantly simplified

Transaction Semantics

Modifications on a set of files take place in an atomic operation

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 20/76



Distributed Systems

Basics

Stateless and Stateful Servers

Advantage of stateless servers

Recovery can be easily implemented

No problems with client crashes

Opening and closing of files is unnecessary

Number of opened files unlimited

Stateless

→ Server has no memory

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 21/76



Distributed Systems

Basics

Stateless and Stateful Servers

Advantage of stateless servers

Recovery can be easily implemented

No problems with client crashes

Opening and closing of files is unnecessary

Number of opened files unlimited

Advantages of stateful servers

Shorter messages

Higher performance

Read-ahead possible

Idempotence of operations easier to implement

File locks are possible

Stateless

→ Server has no memory

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 21/76



Distributed Systems

Basics

Remote Access Model

Client
File-

Server

Client requests to access remote file File stays on server

request

response

request

response

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 22/76



Distributed Systems

Basics

Remote Copy Model

Client

Access on client

File-
Server

Old file

New file

moved to client

returned to server

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 23/76



Distributed Systems

NFS

Agenda

1 Basics

2 NFS

3 AFS and Coda

4 Storage Networks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 24/76



Distributed Systems

NFS

Network File System (NFS)

Design Goals (1985)

Sharing in a network of heterogeneous systems

Starting point: Diskless workstations

Access transparency

No particular path names, libraries, or recompilation

Portability

Definition of NFS as interface
Implementation of client and server side may be differ

Simple handling of site failures

Statelessness of server

Performance

Equivalent to local disk access

Industry standard

By interface disclosure and reference implementation

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 25/76



Distributed Systems

NFS

Overall Architecture

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 26/76



Distributed Systems

NFS

Overall Architecture

File System Switch:
vnode Interface

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 26/76



Distributed Systems

NFS

Operating Principle

Roles

Each node can be client and server simultaneously
Each NFS server exports one or multiple directories
(including the entire subtree)
Common access by multiple clients is possible
Client access requires mounting

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 27/76



Distributed Systems

NFS

Operating Principle

Roles

Each node can be client and server simultaneously
Each NFS server exports one or multiple directories
(including the entire subtree)
Common access by multiple clients is possible
Client access requires mounting

Naming

Hierarchical UNIX file namespace
Location transparency is accomplished only by convention

Not enforced
Mountpoints can in principle be named arbitrarily

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 27/76



Distributed Systems

NFS

Operating Principle

Roles

Each node can be client and server simultaneously
Each NFS server exports one or multiple directories
(including the entire subtree)
Common access by multiple clients is possible
Client access requires mounting

Naming

Hierarchical UNIX file namespace
Location transparency is accomplished only by convention

Not enforced
Mountpoints can in principle be named arbitrarily

Locating

Local mount table in the OS
⇒ No protocol for locating required

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 27/76



Distributed Systems

NFS

Directory Structure

Client A

import bin

fra-uas

mbox

Server

home

hahm

mbox

Client B

work bin

myself

mbox

exported directory
mounted by the client

exported directory
mounted by the client

network

Fig. after Tanenbaum/Steen

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 28/76



Distributed Systems

NFS

Directory Structure

Client A

import bin

fra-uas

mbox

Server

home

hahm

mbox

Client B

work bin

myself

mbox

exported directory
mounted by the client

exported directory
mounted by the client

network
/import/fra-uas/mbox /work/myself/mbox

Fig. after Tanenbaum/Steen

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 28/76



Distributed Systems

NFS

Mount Protocol

Exists as subprotocol until version 3

Integrated into the general access protocol since version 4

Client
NFS-
Server

<pathname>

<opaque file handle>

Static mounting

Happens at boot time

Problem:

Under certain circumstances server is not available at the time of
mounting

→ Client cannot boot without problems

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 29/76



Distributed Systems

NFS

Mount Protocol

Exists as subprotocol until version 3

Integrated into the general access protocol since version 4

Client
NFS-
Server

<pathname>

<opaque file handle>

typical: FStyp, Disk ID,

dir inode #, security infoStatic mounting

Happens at boot time

Problem:

Under certain circumstances server is not available at the time of
mounting

→ Client cannot boot without problems

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 29/76



Distributed Systems

NFS

Automounter

Introduced to solve problems of static mounting

Operating Principle

Mapping:
local mountpoint ↔ set of exported directories

No action at boot time

First access below the mountpoint causes a message to each server in
the set

Who replies first, gets mounted

Failing server do not respond and can be tolerated
Load balancing is possible

No support for general replication

⇒ Often only used for read-only file systems (e.g., /usr)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 30/76



Distributed Systems

NFS

Access Protocol: Differences between Version 3 and 4

For access to directories and files, analog to UNIX system calls

Differences between version 3 and newer version 4

Version 3 is stateless

No support for open and close

read/write have to provide required environment
(file handle, offset, nbytes)
No file locks, only via separate lock server

Version 4 is not stateless!

Goal: Allow for efficient use of NFS for WANs
Requires efficient client-side caching
Impossible to solve stateless
File locks are possible

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 31/76



Distributed Systems

NFS

Access Protocol: RPC

Underlying Protocol

SunRPC (ONC RPC) with XDR data encoding

at-least-once-semantics

Uses UDP/IP

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 32/76



Distributed Systems

NFS

Service Interface

Operation v3 v4 Description

create Yes No Create a regular file

create No Yes Create a nonregular file

link Yes Yes Create a hard link to a file

symlink Yes No Create a symbolic link to a file

mkdir Yes No Create a subdirectory in a given directory

mknod Yes No Create a special file

rename Yes Yes Change the name of a file

rmdir Yes No Remove an empty subdirectory from a directory

open No Yes Open a file

close No Yes Close a file

lookup Yes Yes Look up a file by means of a file name

readdir Yes Yes Read the entries in a directory

readlink Yes Yes Read the path name stored in a symbolic link

getattr Yes Yes Read the attribute values for a file

setattr Yes Yes Set one or more attribute values for a file

read Yes Yes Read the data contained in a file

write Yes Yes Write data to a file
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 33/76



Distributed Systems

NFS

Access Protocol: Compound Operations

Performance improvement in version 4

Particularly relevant for WANs

No concurrency control or atomicity

ServerClient

LOOKUP

Lookup name

READ

Read file data

Time

until Version 3

ServerClient LOOKUP
OPEN
READ

Lookup name

Open file

Read file data

Time

Version 4

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 34/76



Distributed Systems

NFS

Caching

Client side caching

Client-
application

RAM
Cache

Disk
cache

NFS-
Client

Server

RAM
Cache

NFS-
Server

original
files

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 35/76



Distributed Systems

NFS

Caching

Client side caching

Client-
application

RAM
Cache

Disk
cache

NFS-
Client

Server

RAM
Cache

NFS-
Server

original
files

not visible
for client

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 35/76



Distributed Systems

NFS

Caching

Client side caching

Client-
application

RAM
Cache

Disk
cache

NFS-
Client

Server

RAM
Cache

NFS-
Server

original
files

not visible
for client

only in
version 4

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 35/76



Distributed Systems

NFS

RAM Cache

Caching individual blocks of remote files

Big block size for efficient transfer, typical 8 KB

Read-ahead for the next block

Access to executable files with size < thresshold results in complete
transfer

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 36/76



Distributed Systems

NFS

How can we ensure cache
co

herency?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 37/76



Distributed Systems

NFS

Cache Coherency

Not given for version 3

Problem: Multiple clients may cache or even modify blocks of the same
file/directory
Timestamp based weak validation scheme

Validation on open(), cache miss and timeout
(typical: files 3 s, directories 30 s)
After checking its validity this assumed for a certain duration
Write-through for blocks of directories
All modified blocks are transferred to the server at latest on close()

Cache may contain outdated files and directories
⇒ Cooperation of processes via file system not always correct for NFSv3

Given for version 4

Cache invalidation of outdated files, checked on open()

Session semantics

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 38/76



Distributed Systems

NFS

Caching and File Delegation

Only for version 4

Delegation of server tasks to the client. This checks open() and
close() operations of other clients

Possibility to revoke delegation is required

Client Server

Local copy

Old file

Updated
file

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 39/76



Distributed Systems

NFS

Caching and File Delegation

Only for version 4

Delegation of server tasks to the client. This checks open() and
close() operations of other clients

Possibility to revoke delegation is required

Client Server

Local copy

Old file

Updated
file

1. Client requests file

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 39/76



Distributed Systems

NFS

Caching and File Delegation

Only for version 4

Delegation of server tasks to the client. This checks open() and
close() operations of other clients

Possibility to revoke delegation is required

Client Server

Local copy

Old file

Updated
file

1. Client requests file

2. Server delegates file

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 39/76



Distributed Systems

NFS

Caching and File Delegation

Only for version 4

Delegation of server tasks to the client. This checks open() and
close() operations of other clients

Possibility to revoke delegation is required

Client Server

Local copy

Old file

Updated
file

1. Client requests file

2. Server delegates file

3. Server revokes
delegation

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 39/76



Distributed Systems

NFS

Caching and File Delegation

Only for version 4

Delegation of server tasks to the client. This checks open() and
close() operations of other clients

Possibility to revoke delegation is required

Client Server

Local copy

Old file

Updated
file

1. Client requests file

2. Server delegates file

3. Server revokes
delegation

4. Client sends file

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 39/76



Distributed Systems

NFS

What about Security?

Which security
considerations do we need to

take into account?

Where in the system do we need to put se

curity
measures into place?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 40/76



Distributed Systems

NFS

Security

Principal Architecture

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 41/76



Distributed Systems

NFS

Security

Principal Architecture

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 41/76



Distributed Systems

NFS

Security

Principal Architecture

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 41/76



Distributed Systems

NFS

Security

Principal Architecture

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 41/76



Distributed Systems

NFS

Secure RPCs

in version 3:

Only authentication
System

Based on UNIX IDs (uid, gid)
Transferred unencrypted without signature (server trusts client)

Diffie-Hellman

rarely used
Nowadays considered insecure because of too short key length

Kerberos

in version 4:

No built-in mechanisms

Supports RPCSEC_GSS

Security environment for various mechanisms that can be hooked in
Besides authentication it supports integrity and confidentiality

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 42/76



Distributed Systems

NFS

Secure RPCs for Version 4

Architectures of secure RPCs in version 4:

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 43/76



Distributed Systems

NFS

Access Control

in version 3:

UNIX permission checking (uid, gid) at server side

in version 4:

ACL based

Subjects strongly differentiated

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 44/76



Distributed Systems

NFS

UNIX permissions

Which scopes (or classe
s)

are defined?

Which permissions can be

specified?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 45/76



Distributed Systems

NFS

Access Control Operations

Operation Description
read_data Permission to read the data contained in a file
write_data Permission to modify a file’s data
append_data Permission to append data to a file
execute Permission to execute a file
list_directory Permission to list the contents of a directory
add_file Permission to add a new file to a directory
add_subdirectory Permission to create a subdirectory to a directory
delete Permission to delete a file
delete_child Permission to delete a file or directory within a directory
read_acl Permission to read the ACL
write_acl Permission to write the ACL
read_attributes The ability to read the other basic attributes of a file
write_attributes Permission to change the other basic attributes of a file
read_named_attrs Permission to read the named attributes of a file
write_named_attrs Permission to write the named attributes of a file
write_owner Permission to change the owner
synchronize Permission to access a file locally at the server with synchronous reads

and writes

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 46/76



Distributed Systems

NFS

Access Control Subjects

User type Description

Owner The owner of a file

Group The group of users associated with a file

Everyone Any user of a process

Interactive Any process accessing the file from an interactive terminal

Network Any process accessing the file via the network

Dialup Any process accessing the file through a dialup connection to
the server

Batch Any process accessing the file as part of a batch job

Anonymous Anyone accessing the file without authentication

Authenticated Any authenticated user of a process

Service Any system-defined service process

According to Tanenbaum/Steen

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 47/76



Distributed Systems

AFS and Coda

Agenda

1 Basics

2 NFS

3 AFS and Coda

4 Storage Networks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 48/76



Distributed Systems

AFS and Coda

Andrew File System (AFS)

Carnegie Mellon University (CMU) with IBM, 1983 – 1989, later
Transarc and OpenAFS
File system for the campus with more than 5,000 active students
Goals

Location transparency, common global file namespace, accessible via
the local name /afs

High performance
High availability

Replication
High security

Secure authentication
Encrypted transfer
ACLs for access control

Automatic migration of home directories of users

Coda

Newer versions of AFS-2

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 49/76



Distributed Systems

AFS and Coda

File Namespace

/

Node 1

/

Node n

afs afs

local

file systems

local

file systems

distributed

file system

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 50/76



Distributed Systems

AFS and Coda

Overall Architecture

(trusted)

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 51/76



Distributed Systems

AFS and Coda

Volumes

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 52/76



Distributed Systems

AFS and Coda

Virtue Client Architecture

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 53/76



Distributed Systems

AFS and Coda

Virtue Client Architecture

- Finding files in Vice
- local cache
- Emulation
of UNIX file-

semantics

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 53/76



Distributed Systems

AFS and Coda

Virtue Client Architecture

- Finding files in Vice
- local cache
- Emulation
of UNIX file-

semantics

Communication
to Vice via RPC

UDP based

exactly-once-

semantics

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 53/76



Distributed Systems

AFS and Coda

Properties

Commonly used files with session semantics

Local caching: of entire files until AFS-2/of big file blocks (64 kB)
since AFS-3

Cache coherency

Check the cache validity not required for each open()

Callback procedure, i.e., explicit invalidation by the server before
another client gets write permissions

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 54/76



Distributed Systems

AFS and Coda

Security

Organisation

Vice-Server are trusted
No client applications on servers
Introduction of administrative cells to increase scalability

Subjects

User
Groups

Authentication

Particular authentication server, Kerberos (since AFS-3)
Secure RPC

Access Control

ACLs defined for directories, apply for all files of the directory

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 55/76



Distributed Systems

AFS and Coda

Coda

Further development of AFS-2 since 1987

Goals:

High availability of the files
Client can continue to work, even when the server is temporarily not
reachable (network partioning)
Inclusion of mobile computers (intentional network partioning)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 56/76



Distributed Systems

AFS and Coda

File IDs

Fig. from Tanenbaum/SteenProf. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 57/76



Distributed Systems

AFS and Coda

File IDs

File ID

Fig. from Tanenbaum/SteenProf. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 57/76



Distributed Systems

AFS and Coda

File IDs

File ID

Replicated volume
identifier (logical)

Fig. from Tanenbaum/SteenProf. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 57/76



Distributed Systems

AFS and Coda

File IDs

File ID

Replicated volume
identifier (logical)

replicas

Fig. from Tanenbaum/SteenProf. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 57/76



Distributed Systems

AFS and Coda

Properties for Normal Operation

Session semantics

One writer

Multiple readers

Fig. from Tanenbaum/Steen

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 58/76



Distributed Systems

AFS and Coda

Properties for Normal Operation

Session semantics

One writer

Multiple readers

noncritical: A

reads from older

file version,

processes this

Fig. from Tanenbaum/Steen

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 58/76



Distributed Systems

AFS and Coda

Caching

On open() the file is loaded into the client’s cache
Server makes callback promise
For invalidation the server sends a callback break

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 59/76



Distributed Systems

AFS and Coda

Caching

On open() the file is loaded into the client’s cache
Server makes callback promise
For invalidation the server sends a callback break

local copy still up-to-date

⇒ no transmission

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 59/76



Distributed Systems

AFS and Coda

Caching

On open() the file is loaded into the client’s cache
Server makes callback promise
For invalidation the server sends a callback break

local copy still up-to-date

⇒ no transmission

new session

with new copy

Fig. from Tanenbaum/Steen
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 59/76



Distributed Systems

AFS and Coda

Server Replication and Network Partitioning

Volume is the unit for replication

Volume Storage Group (VSG)

Set of servers with a copy of a volume

Accessible Volume Storage Group (AVSG)

Subset of VSG which can be accessed from the client

Reading from a replica, write to all via MultiRPC

Optimistic strategy for file replication

On partitioning multiple writers may exist and write back to their
respective AVSGs

Maintaining of version vectors (→ vector timestamps), check on update

Merge of multiple versions later on, may require manual assistance

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 60/76



Distributed Systems

AFS and Coda

Connectionless Operation

Connectionless: AVSG= ∅ ⇒ use of local copy

Conflict detection on transmission to server

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 61/76



Distributed Systems

AFS and Coda

Connectionless Operation

Connectionless: AVSG= ∅ ⇒ use of local copy

Conflict detection on transmission to server

Observation

Conflicts are rare since modifications to one file by multiple processes
are infrequent

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 61/76



Distributed Systems

AFS and Coda

Connectionless Operation

Connectionless: AVSG= ∅ ⇒ use of local copy

Conflict detection on transmission to server

Observation

Conflicts are rare since modifications to one file by multiple processes
are infrequent

Problem

Keep relevant files in local cache when disconnect happens

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 61/76



Distributed Systems

AFS and Coda

Hoarding

How can we select the files to be stored in

the local cac
he?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 62/76



Distributed Systems

AFS and Coda

Hoarding

How can we select the files to be stored in

the local cac
he?

Approach: Hoarding (of files)

Heuristic method
Explicit declaration of files and directories by the user
Prioritisation by matching with current access information
Cache alignment (hoard walk) every 10 minutes
Good experiences, but of course it happens that occasionally relevant
files are missing

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 62/76



Distributed Systems

AFS and Coda

Summary

Issue NFS Coda

Design goals Access transparency High availability

Access model Remote Up/Download

Communication RPC RPC

Client process Thin/Fat Fat

Server groups No Yes

Mount granularity Directory File system

Name space Per client Global

File ID scope File server Global

Sharing sem. Session Transactional

Cache consist. write-back write-back

Replication Minimal ROWA

Fault tolerance Reliable comm. Replication and caching

Recovery Client-based Reintegration

Secure channels Existing mechanisms Needham-Schroeder

Access control Many operations Directory operations

According to Tanenbaum/Steen

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 63/76



Distributed Systems

Storage Networks

Agenda

1 Basics

2 NFS

3 AFS and Coda

4 Storage Networks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 64/76



Distributed Systems

Storage Networks

Storage Networks

Use of network technology and distributed systems in a storage system

Motivation

Cost reduction

Reduced provided storage capacities
Central administration

More flexible provisioning

Faster adaption to changing requirements

Scalability

From small to very large storage capacities

Options for disaster recovery

Data mirroring at remote locations

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 65/76



Distributed Systems

Storage Networks

Architecture Approaches

Today’s essential architectural approaches

Direct Attached Storage (DAS) (traditional local storage)

Storage Area Networks (SAN)

Network-Attached Storage (NAS)

Content Addressed Storage (CAS)

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 66/76



Distributed Systems

Storage Networks

Storage Systems as Layered Systems

Basic breakdown of the data storage functionality

block storage Mapping to phys. storage device

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 67/76



Distributed Systems

Storage Networks

Storage Systems as Layered Systems

Basic breakdown of the data storage functionality

file system

block storage

Mapping to logical set of blocks,
e.g., NFS, AFS, Microsoft SMB/CIFS

Mapping to phys. storage device

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 67/76



Distributed Systems

Storage Networks

Storage Systems as Layered Systems

Basic breakdown of the data storage functionality

search function
and navigation

file system

block storage

path names, query, index, metadata, . . .

Mapping to logical set of blocks,
e.g., NFS, AFS, Microsoft SMB/CIFS

Mapping to phys. storage device

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 67/76



Distributed Systems

Storage Networks

Overview for Integration of Networks

search function
and navigation

file system

block storage

DAS

Local host

Storage

Architecture

search function
and navigation

file system

block storage

SAN

Network

search function
and navigation

file system

block storage

NAS

Network

search function
and navigation

block storage

file system

NAS/SAN

Network

Network

block storage

(CAS)

file system

search function
and navigation

Network

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 68/76



Distributed Systems

Storage Networks

Direct Attached Storage (DAS)

Traditional, locally attached storage devices

Local OS contains file system and device driver

Typical device interfaces

IDE/ATA, SCSI, Serial ATA (SATA), ...

Limitations

Number of available channels
Number of attachable devices per channel
maximum distance (≈ 1 – 25 m)

⇒ No disaster recovery possible
Performance

⇒ Not very scalable

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 69/76



Distributed Systems

Storage Networks

Storage Area Network (SAN)

Operating principle

SAN provides block storage (e.g., hard disks as logical devices)

Server operating systems provide one or multiple file system

Block storage is accessed by the servers via SAN

Advantages

Very simple extensibility

Very high degree of flexibility in assignability

Very scalable

Basis for replication, also for disaster recovery

Bootable network partitions

Especially suited for applications who works
with volumes (without file system), e.g., DBMS

SAN

Local file
system

Local file
system

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 70/76



Distributed Systems

Storage Networks

Network Attached Storage (NAS)

Operating principle

NAS provides network file systems
(e.g., NFS, SMB/CIFS)

Clients may use these file systems

Advantages

Storage consolidation

Expandability

Scalability

Manageability

Especially suited for applications which are
based on file access, e.g., web applications
or home directories

block storage

file system
NAS-
server

file system-
clients

e.g., web server

LAN

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 71/76



Distributed Systems

Storage Networks

NAS Examples

Home server

Synology
ZyXEL
My Cloud
OpenMediaVault (Software)

IBM SONAS and Storwize

Buffalo TeraSTation

CTERA Networks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 72/76



Distributed Systems

Storage Networks

Combination of NAS and SAN

Operating principle

NAS and SAN can be used combined

Advantages can be combined

NAS-Server
file system

Clients

LAN

SAN

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 73/76



Distributed Systems

Storage Networks

Content Addressable Storage (CAS)

Main idea: Immutable information

⇒ also called Fixed Content Storage (FCS)

Goal: archive storage

Subproblem of the Information Lifecycle Management (ILM)

Mass data (hundreds of terabytes or even petabytes)

Longevity

Integrity

Immutability of documents, partly required by law

Usage for content management
Digital media (audio or image documents)

Email archiving

Health care (X-ray images etc.)

. . .

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 74/76



Distributed Systems

Storage Networks

CAS: Operating Principle

Content identifier as reference

Determination of a content identifier

Only by its content (→ hash value) ⇒ location independent
Or by its storage location (inverted)

System determines location for access via its content identifier

Examples

First System: EMC Centera 2002

iTernity iCAS (Software solution)

Various open source solutions, e.g., Keep Content Addressable Storage

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 75/76



Distributed Systems

Summary

Important takeaway messages of this
chapter

Distributed file systems enable
concurrent access access to files by
different users, independent of their
storage location.

Access to files can lead to different
results depending on the consistency
semantics.

By dividing the functionality for
information storage on different
systems in the network, scalability,
fault tolerance, etc. can be improved.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed File Systems – SS 24 76/76


	Basics
	NFS
	AFS and Coda
	Storage Networks

