
Distributed Systems

Distributed Systems
Distributed State

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

11.06.2024

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 1/29

https://teaching.dahahm.de


Distributed Systems

Processes

In computer systems two type of processes exist

stochastic processes1 and

deterministic processes

1see: https://en.wikipedia.org/wiki/Stochastic_process
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 2/29

https://en.wikipedia.org/wiki/Stochastic_process


Distributed Systems

Processes

In computer systems two type of processes exist

stochastic processes1 and

deterministic processes

In order to implement programs whose execution results in a deterministic process, the
program should be SMART and have the following attributes:

1see: https://en.wikipedia.org/wiki/Stochastic_process
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 2/29

https://en.wikipedia.org/wiki/Stochastic_process


Distributed Systems

Processes

In computer systems two type of processes exist

stochastic processes1 and

deterministic processes

In order to implement programs whose execution results in a deterministic process, the
program should be SMART and have the following attributes:

S pecific: The process is defined to fulfill exactly the dedicated case.

1see: https://en.wikipedia.org/wiki/Stochastic_process
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 2/29

https://en.wikipedia.org/wiki/Stochastic_process


Distributed Systems

Processes

In computer systems two type of processes exist

stochastic processes1 and

deterministic processes

In order to implement programs whose execution results in a deterministic process, the
program should be SMART and have the following attributes:

S pecific: The process is defined to fulfill exactly the dedicated case.

M easurable: The process provides a well defined impact on its objects.

1see: https://en.wikipedia.org/wiki/Stochastic_process
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 2/29

https://en.wikipedia.org/wiki/Stochastic_process


Distributed Systems

Processes

In computer systems two type of processes exist

stochastic processes1 and

deterministic processes

In order to implement programs whose execution results in a deterministic process, the
program should be SMART and have the following attributes:

S pecific: The process is defined to fulfill exactly the dedicated case.

M easurable: The process provides a well defined impact on its objects.

A chievable: The process is able to fulfill its goals given the provided resources.

1see: https://en.wikipedia.org/wiki/Stochastic_process
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 2/29

https://en.wikipedia.org/wiki/Stochastic_process


Distributed Systems

Processes

In computer systems two type of processes exist

stochastic processes1 and

deterministic processes

In order to implement programs whose execution results in a deterministic process, the
program should be SMART and have the following attributes:

S pecific: The process is defined to fulfill exactly the dedicated case.

M easurable: The process provides a well defined impact on its objects.

A chievable: The process is able to fulfill its goals given the provided resources.

R epeatable: The process can be invoked multiple times with the same input and
produce the same output.

↪→ In the literature instead of Repeatable, you will also find Responsible or even Relevant
1see: https://en.wikipedia.org/wiki/Stochastic_process
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 2/29

https://en.wikipedia.org/wiki/Stochastic_process


Distributed Systems

Processes

In computer systems two type of processes exist

stochastic processes1 and

deterministic processes

In order to implement programs whose execution results in a deterministic process, the
program should be SMART and have the following attributes:

S pecific: The process is defined to fulfill exactly the dedicated case.

M easurable: The process provides a well defined impact on its objects.

A chievable: The process is able to fulfill its goals given the provided resources.

R epeatable: The process can be invoked multiple times with the same input and
produce the same output.

T erminated: Given the same resources the process produces the same results in a
determined time frame.

↪→ In the literature instead of Repeatable, you will also find Responsible or even Relevant
1see: https://en.wikipedia.org/wiki/Stochastic_process
Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 2/29

https://en.wikipedia.org/wiki/Stochastic_process


Distributed Systems

Agenda

1 Coordination

2 Global State

3 Mutual Exclusion

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 3/29



Distributed Systems

Coordination

Agenda

1 Coordination

2 Global State

3 Mutual Exclusion

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 4/29



Distributed Systems

Coordination

What is required to make a dis

tribut
ed applica

tion behave
de

terministical
ly?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 5/29



Distributed Systems

Coordination

Coordination in the Distributed System

Problem statement:

Distributed systems consist of objects and dynamic interrelationship
between these objects: processes

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 6/29



Distributed Systems

Coordination

Coordination in the Distributed System

Problem statement:

Distributed systems consist of objects and dynamic interrelationship
between these objects: processes

Each individual object has a set of attributes and the processes have a
state

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 6/29



Distributed Systems

Coordination

Coordination in the Distributed System

Problem statement:

Distributed systems consist of objects and dynamic interrelationship
between these objects: processes

Each individual object has a set of attributes and the processes have a
state

Objects and processes are distributed in the system and may be
independent from each other or require some kind of coordination.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 6/29



Distributed Systems

Coordination

Coordination in the Distributed System

Problem statement:

Distributed systems consist of objects and dynamic interrelationship
between these objects: processes

Each individual object has a set of attributes and the processes have a
state

Objects and processes are distributed in the system and may be
independent from each other or require some kind of coordination.

Coordination and Synchronization

Coordination in the distributed systems allows to make the behavior
of the system predictable and interactions causal by ordering them.
The letter requires the introduction of a ’time line’ in the system,
which is known as clock synchronization among the nodes.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 6/29



Distributed Systems

Coordination

Global states in a Distributed System

Processes in a distributed systems require synchronization and coordination

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 7/29



Distributed Systems

Coordination

Global states in a Distributed System

Processes in a distributed systems require synchronization and coordination

in case a process is accessing shared resources

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 7/29



Distributed Systems

Coordination

Global states in a Distributed System

Processes in a distributed systems require synchronization and coordination

in case a process is accessing shared resources

the process needs interruption during its operation (triggered events).

Different nodes have individual clocks

↪→ Without a clock and time synchronization processes in a distributed
systems may behave erratically and coordination becomes difficult or even
infeasible

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 7/29



Distributed Systems

Coordination

Recap: Garbage Collection

How does garbag
e collection

(gc) work?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 8/29



Distributed Systems

Coordination

Global Properties: Garbage Collection

p1

msg

p2

Object
references

Garbage
object

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 9/29



Distributed Systems

Coordination

Recap: Deadlock

What is a deadlock?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 10/29



Distributed Systems

Coordination

Global Properties: Deadlock

p1
wait-for

wait-for

p2

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 11/29



Distributed Systems

Coordination

Recap: Deadlock

When does a process termi

nate?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 12/29



Distributed Systems

Coordination

Global Properties: Termination

passive

p1

activate

msg

passive

p2

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 13/29



Distributed Systems

Global State

Agenda

1 Coordination

2 Global State

3 Mutual Exclusion

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 14/29



Distributed Systems

Global State

What is necessary
in order to

assess the global sta
te of a dis

tribut
ed applica

tion?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 15/29



Distributed Systems

Global State

Happened-Before Relation

Problem statement

Is it possible to maintain a global view on the state of system’s behavior wrt
the happened-before relationship?

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 16/29



Distributed Systems

Global State

Happened-Before Relation

Problem statement

Is it possible to maintain a global view on the state of system’s behavior wrt
the happened-before relationship?

In other words:
If we introduce a cut C (a snapshot), can we guarantee

∀e ∈ C : f → e =⇒ f ∈ C ?

Source: Coulouris et al, Distributed Systems, Pearson

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 16/29



Distributed Systems

Global State

Consistent Cuts

A consistent cut requires a consistent global state of the distributed
system

The history of a process i is defined as h(i) =< e1
i , e

2
i , e

3
i , . . . >

The global history H is the union of all histories of the involved
processes

A cut is a union of prefixes of process histories

A run is a total ordering of all the events in a global history that is
consistent with each local history’s ordering

A consistent run orders (serializes) the events in the global history H;
to be consistent with the happened-before relation (→) on H.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 17/29



Distributed Systems

Global State

Global States

Within a distributed system a Global State implies the following
consistency conditions:

Assigning a Global State Predicate to a distributed system is
equivalent of providing a function, that maps the set of Global States
to {true; false}.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 18/29



Distributed Systems

Global State

Global States

Within a distributed system a Global State implies the following
consistency conditions:

Assigning a Global State Predicate to a distributed system is
equivalent of providing a function, that maps the set of Global States
to {true; false}.

A Global State is stable: Once it has reached condition {true} and it
remains in that state for all states connected to that state.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 18/29



Distributed Systems

Global State

Global States

Within a distributed system a Global State implies the following
consistency conditions:

Assigning a Global State Predicate to a distributed system is
equivalent of providing a function, that maps the set of Global States
to {true; false}.

A Global State is stable: Once it has reached condition {true} and it
remains in that state for all states connected to that state.

Safety is an assertion once an undesired state predicate evaluates to
{false} all other states S reachable from the starting state S0 are
false also.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 18/29



Distributed Systems

Global State

Global States

Within a distributed system a Global State implies the following
consistency conditions:

Assigning a Global State Predicate to a distributed system is
equivalent of providing a function, that maps the set of Global States
to {true; false}.

A Global State is stable: Once it has reached condition {true} and it
remains in that state for all states connected to that state.

Safety is an assertion once an undesired state predicate evaluates to
{false} all other states S reachable from the starting state S0 are
false also.

Liveness is an assertion to a desired state predicate to {true} all other
states reachable from So are true as well.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 18/29



Distributed Systems

Mutual Exclusion

Agenda

1 Coordination

2 Global State

3 Mutual Exclusion

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 19/29



Distributed Systems

Mutual Exclusion

Exclusive Resources for a Process

Problem statement:
For a process it might be necessary to have exclusive access to a resource. How this can
be accomplished in a distributed system?
Examples:

A process P wants to write to a file (storage) and has to make sure no other
process is reading to that file yielding inconsistencies.

A database is required to update a cell in a table (exclusive lock).

A process P wants to remove by means of rm -r d the directory d recursively
while guaranteeing that no other (remote) process Pj accesses any other file in the
underlying directory structure.

We know this problem from the Operating Systems as entering a critical section:

Critical Sections

enter() enter critical section – set up blocking
accessResource() access shared resource in critical section
exit() leave critical sections – free resource

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 20/29



Distributed Systems

Mutual Exclusion

Mutual Exclusion: Requirements

A distributed system has to conform to some essential requirements in order
to provide Mutual Exclusive capabilities:

1 Safety: At most one process p may execute a critical section in a given time
interval δt.

2 Liveness: A process p requests to enter the critical section and eventually succeeds.

3 Ordering: Request from processes pi to enter the critical section follow the
happened-before relationship.

↪→ A distributed system not conforming to these requirements will
experience deadlocks in process handling and eventually stalling of
execution.

Source: Coulouris et al, Distributed Systems, Pearson

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 21/29



Distributed Systems

Mutual Exclusion

Mutual Exclusion: Solutions

Some possible architectures have been developed to cope with these
requirements:

1 We provide a central service (coordinator) for resource allocation.

2 Nodes operate entirely decentralized on a peer-to-peer bases; thus no
transitive dependencies exist.

3 Nodes operate entirely independent and distributed, without
considering any topology dependencies; thus the intrinsic architecture
has to guarantee for this.

4 Operations take place in or ordered manner; typically a logical ring;
thus access rights are ordered in time (and by node).

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 22/29



Distributed Systems

Mutual Exclusion

Mutual Exclusion: Caveats

Due to the message (= information) transfer in the distributed system to
synchronize activities, mutual exclusion is not free of costs:

Message transfer consumes bandwidth and require processing for
entry() and exit() operations in addition to operating with the
resource.

Operations at the client side to access the resource are significantly
delayed.

Access rates is limited given he concurrent access by clients entering
the critical section.

Throughput is limited by synchronization delay between two processes
exiting an entering the critical section.

↪→ A good system design require as little mutual exclusions as possible

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 23/29



Distributed Systems

Mutual Exclusion

Solution 1: Central locking

One dedicated node in the distributed system is assigned a coordinator tracking all
unsatisfied and pending processes requests Pk in a Queue:

Source: Tanenbaum, Van Steen, Distributed Systems, Pearson

Let process 3 be the coordinator. Access to a resource is permitted only in case 3 has
provided an Ok message.

(a) Process 1 requests access to a resource. Since no other process wants to access the same
resource, coordinator 3 immediately permits this.

(b) Process 2 is asking for the same resource. 3 puts the request for process 2 in the queue, 2
is blocked.

(c) Once process 1 has released the resource and notified 3, 2 is informed about its permissive
use.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 24/29



Distributed Systems

Mutual Exclusion

Solution 2: Decentralized/local locking

In this scenario,

all resources in the distributed system needs to be replicated n times
having its own (local) coordinator,

access permissions are given via a majority vote m > n/2 of local
coordinators while

responses from the local coordinator are given immediately.

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 25/29



Distributed Systems

Mutual Exclusion

Solution 2: Decentralized/local locking

In this scenario,

all resources in the distributed system needs to be replicated n times
having its own (local) coordinator,

access permissions are given via a majority vote m > n/2 of local
coordinators while

responses from the local coordinator are given immediately.

Consequences

Amnesia of a coordinator: If a coordinator crashes it has lost all reported states.
Even if the bookkeeping is done persistently, time sync operations are required; thus
better scratch the entire state tables.

Robustness of the distributed system: In order for the system to work, just a little
over 50% of the coordinators need to vote – or are available. Assuming the
availability of a coordinator process being 99.9% the probability of a dysfunctional
distributed system is extremely small

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 25/29



Distributed Systems

Mutual Exclusion

Solution 3: Mutual exclusion according to Ricart & Agrawala

We consider processes p1, p2, ..., pn providing
mutual exclusion by means of

unique process identifiers (PID)
inter-process communication (IPC) between
processes, and
Lamport clocks attached to each message. Source: Coulouris et al, Distributed Systems, Pearson

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 26/29



Distributed Systems

Mutual Exclusion

Solution 3: Mutual exclusion according to Ricart & Agrawala

We consider processes p1, p2, ..., pn providing
mutual exclusion by means of

unique process identifiers (PID)
inter-process communication (IPC) between
processes, and
Lamport clocks attached to each message. Source: Coulouris et al, Distributed Systems, Pearson

A process states can be:

released(): outside the critical section
wanted(): trying to enter the critical section
accessed(): process is within the critical section

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 26/29



Distributed Systems

Mutual Exclusion

Solution 3: Mutual exclusion according to Ricart & Agrawala

We consider processes p1, p2, ..., pn providing
mutual exclusion by means of

unique process identifiers (PID)
inter-process communication (IPC) between
processes, and
Lamport clocks attached to each message. Source: Coulouris et al, Distributed Systems, Pearson

A process states can be:

released(): outside the critical section
wanted(): trying to enter the critical section
accessed(): process is within the critical section

A process in state released() immediately answers requests

A process in state accessed() is blocked and does not reply to messages

If more than one process is in state wanted(), the first one collecting n − 1 replies
is allowed to accessed().

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 26/29



Distributed Systems

Mutual Exclusion

Solution 4: Token Ring based means

Exclusive access to a resource can be provided by possessing a particular
message a Token:

Processes needs be be logical ordered in a
ring – irrespective of real network.

A Token is passed around, permitting
access to a critical section.

Conditions Safety and Liveness are fulfilled.

Ordering in time is not achieved and
substituted by the logical process order.

Significant consumption of bandwidth due
to Token passing for every critical resource.

Access delay of resources depend on the
topology (= number of nodes) for the
Token passing.

Source: Coulouris et al, Distributed Systems, Pearson

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 27/29



Distributed Systems

Mutual Exclusion

Comparison of Solutions

Solution Algorithm #msgs per

entry/exit

Delay entry
(in msg times)

Caveats

1 centralized 3 2 coordinator crash
2 decentralized 2mk +m 2mk Starvation, low efficiency

k = 1, 2, ...
3 distributed 2 ∗ (n − 1) 2 ∗ (n − 1) Crash of any process
4 token ring 1 to ∞ 0 to n − 1 Lost token, process crash

Table: Comparison of solutions for mutual exclusions in Distributed Systems

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 28/29



Distributed Systems

Summary

Important takeaway messages of this
chapter

Coordination in distributed systems is
not trivial

The happened-before relationship is
crucial to assess the global state of a
distributed system

Different ways for mutual exclusion in
distributed systems exist – each with
its individual benefits and drawbacks

Prof. Dr. Oliver Hahm – Distributed Systems – Distributed State – SS 24 29/29


	Coordination
	Global State
	Mutual Exclusion

