Distributed Systems Peer-to-Peer Online Gaming

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
 oliver.hahm@fb2.fra-uas.de
 https://teaching.dahahm.de

16.07.2024

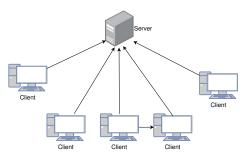
What is an Online Game?

Game Data

- Immutable game data (play world, rules...)
- Object states
- Actions
- User input
- ...

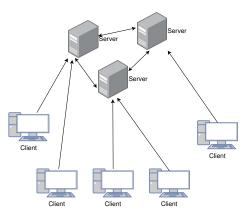
Update Strategies

Prof. Dr. Oliver Hahm - Distributed Systems - Peer-to-Peer Online Gaming - SS 24

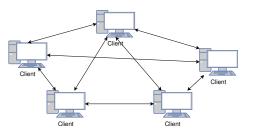


Architectures for Distributed Gaming

Update Strategies


Prof. Dr. Oliver Hahm - Distributed Systems - Peer-to-Peer Online Gaming - SS 24

Client-Server


- Game is hosted in a data center
- Different software for server and client
- Centralized solution
- Subcomponents:
 - account-management
 - partitioning of the game world
 - monitoring
 - persistence

Multi-Server

- Several servers
- Redundant data storage
- Reduced distance between client and server ⇒ reduced latency
- Dynamic solutions:
 - replication
 - proxy-Server

Peer-to-Peer

- No explicit servers
- Data exchange between adjacent peers
- Every peer is hosting part of the game world
- Dynamic partition of the game world

Thin vs. Fat Client

Thin Client

- Only the server holds and modifies the game state
- Part of the state is propagated to the clients upon connection
- Server sends updates of game state changes to clients
- Client transmits action requests to the server
- Actions are handled in their order of arrival and results are propagated to all affected clients

Fat Client

- Clients managing their own objects (→ no one else can modify them)
- Server manages chronological sequence with time stamps and transmits changes to the other clients
- Local game states may vary, due to latency
- Chronological sequence may be inconsistent (local changes take effect before global ones in contradiction to their chronological order)

What are the advantages and drawbacks for a Thin Client Solution?

Thin Client Solution

Advantages

- Central management of game state
 - \Rightarrow Consistent game state
 - \Rightarrow No conflicts
 - \Rightarrow Persistent system to store the state
- Easier cheating protection

Drawbacks

- High server load
- Potential high latency
- Client processing power not utilized

Design Choices

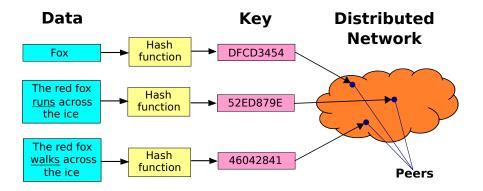
- How many participants can play the game?
- What kind of participants can take part?
- What needs to be exchanged?
- Which data can be accessed by whom? Which permissions do the participants have?
- What are the timing requirements?

Protocol Information

Object attributes: (Action Result Protocol)

- protocol sets the current parameter value of a game entity (set hit points for player "haxOr" t to 96)
- protocol sends relative changes (reduce hit points for player "haxOr" by 100)
- Actions: (Action Request Protocol)
 - Contains only player input without direct impact on game state
 - Protocol only transfers user input ⇒ results must be calculated on the server

(try to hit player "haxOr" with "axe")

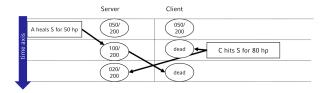


Architectures for Distributed Gaming

Update Strategies

How can we distribute data in a P2P network?

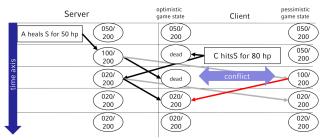
Distributed Hash Tables



Overlay Networks

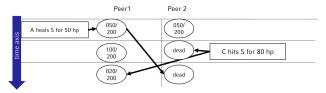
- A logical network built on top of a physical network
 - Overlay links are realized by connections of the underlying network
- Multiple overlay networks may coexist at once
 - On the same layer or on top of each other
 - Providing particular services
- Nodes are often end hosts of the underlying network
 - Acting as intermediate nodes that forward traffic
 - Providing a service, such as access to files
- Who controls the nodes providing service?
 - The party providing the service
 - Distributed collection of end users

Conflicts during decentralized computing


- Local changes need time to be transmitted to the network
- Actions are calculated for and executed on local game states ⇒ changes that predate the action may not be taken into account
- Simple solutions:
 - Client is not allowed to change local data without server acknowledgment
 - Using object protocols the server may send an update of the current game entity state.

Solution Approach

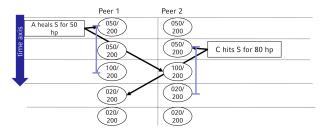
Reset local actions


- Client has 2 game states:
 - optimistic GS (contains local changes)
 - pessimistic GS (contains actions transmitted by the server)
- On mismatch: Resetting the optimistic GS to the pessimistic GS

Local time

up until now: One server handles processing sequence

- Impossible for P2P games and multi server architecture
 - \Rightarrow sequence is inconclusive after arrival at server
 - \Rightarrow organization by local time stamps on creation
- During processing both, own and foreign changes may appear in incorrect sequence
- In case of inconsistencies game entities can be synchronized


Solutions by Local Lag Mechanism

Problem is causes by the lack of knowledge about previous actions

Solution: Lag-Mechanism

Processing updates is delayed to allow for other actions to arrive in time

If this time frame is exceeded, conflict detection and reset become necessary

Server Side vs. Client Side Processing

Server side processing

- Properties
 - content accuracy is important
 - response time less important
 - chronological order is important

Used for...

- damage and healing
- item pick up

Client side processing

- Properties
 - response time is crucial
 - synchronization and sequence are less important
- Used for...
 - position and movement data
 - animations and other display effects

 Matthias Schubert, Managing and Mining Multiplayer Online Games, LMU München

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

- Jennifer Rexford, Computer Networks, Princeton http://www.cs.princeton.edu/courses/archive/spring07/cos461/
- Distributed Hash Table, Wikipedia https://commons.wikimedia.org/wiki/File:DHT_en.svg