
MOCK
EXAM

Written examination in
Distributed Systems

July 15, 2024

Last name:

First name:

Student number:

Signature:

MOCK
EXAM

MOCK
EXAM

Written examination in
Distributed Systems

July 15, 2024

Please write only your student number — but not your name — on this or any of the following sheets.
By omitting your name a pseudonymized correction of your exam can be achieved. The first page with
your name will be removed before correction and consequently the corrector cannot be biased when
correcting your exam. By putting your student number on all pages you make sure that even in the
case the stapling gets lost each page can be attributed to your exam.

Student number:

Result:

Question: 1 2 3 4 5 6 7 8 9 10 Total

Points: 10 10 13 5 12 11 8 9 8 4 90

Score:

1.0: 90-85.5, 1.3: 85-81, 1.7: 80.5-76.5, 2.0: 76-72, 2.3: 71.5-67.5,
2.7: 67-63, 3.0: 62.5-58.5, 3.3: 58-54, 3.7: 53.5-49.5, 4.7: 49-45, 5.0: <45

MOCK
EXAM

MOCK
EXAM

Student number:

Question 1 Points: . (max. 10 points)

Decide whether the following statements are correct or wrong and explain shortly why.
(a) When a component in a distributed system can be moved without

changing the user interface it is called location transparent.
2 True 2 Wrong

(b) TCP is a good choice for the transport layer protocol if latency is
most important.

2 True 2 Wrong

(c) Sockets can be used in almost any programming language on most
operating systems.

2 True 2 Wrong

(d) Shared memory can be used for IPC in a distributed system. 2 True 2 Wrong

(e) RPC can be used to achieve access transparency. 2 True 2 Wrong

(f) LDAP is a popular example for a directory service. 2 True 2 Wrong

Distributed Systems Page 3 of 20

MOCK
EXAM

Student number:

(g) An ISBN is a pure name. 2 True 2 Wrong

(h) GPS receivers or atomic clocks can be used as reference time
sources.

2 True 2 Wrong

(i) Lamport or vector clocks can be used to solve the causality problem. 2 True 2 Wrong

(j) Interactions in a REST service require sufficient memory on the
server to store the state.

2 True 2 Wrong

(k) Distributed file systems require always a dedicated file server. 2 True 2 Wrong

Distributed Systems Page 4 of 20

MOCK
EXAM

Student number:

Question 2 Points: . (max. 10 points)

Question Answer

What needs to be implemented in order to use a
at-most-once semantics in an RPC system?

What is the orphan problem in an RPC system?

How is location transparency guaranteed in NFS?

What is the validity period of the key used for sym-
metric encryption in TLS?

Which communication pattern allows for transpar-
ent sending of a message to multiple receivers?

Can an HTTP method be safe but not idempotent?

Which relationship must be given for a pair of Lam-
port timestamps if two events are concurrent?

Why does the application developer need to know
the error semantics of a given RPC system?

What does a GPS based clock provide?

What is meant as strict consistency for a (dis-
tributed) file system?

Distributed Systems Page 5 of 20

MOCK
EXAM

Student number:

Question 3 Points: . (max. 13)

The following stub code sends a string of variable length over a previously opened socket.
#include <s t d i n t . h>
#include <s t r i n g . h>
#include <unis td . h>

int wr i t e_st r ing (int sock , char ∗ s t r i n g)
{

int l en = s t r l e n (s t r i n g) ;
int16_t length_hdr = len ;
uint8_t ∗message = mal loc (l en + s izeof (length_hdr)) ;
memcpy(&message [0] , &length_hdr , s izeof (length_hdr)) ;
memcpy(&message [s izeof (length_hdr)] , s t r i ng , l en) ;
i f (wr i t e (sock , message , l en + s izeof (length_hdr)) < 0)
{

return −1;
}
f r e e (message) ;
return 0 ;

}

(a) (1)What is the maximum length of a string to be sent in this function? Why?

(b) (1)What happens if this limit is exceeded?
2 Program abort due to dereferencing an invalid pointer
2 No abort, but only a part of the string gets transmitted
2 Undefined (cannot be answered without knowledge of the receive function)

(c) (2)Would it be better if the variables len and length_hdr in the code above would not be
declared as signed1?
2 If no: Why not? Which problems would result in this case?

2 If yes: What are the consequences for the answers to the questions a) and b)?
Maximum string length in that case: bytes
2 Program abort due to dereferencing an invalid pointer
2 No abort, but only a part of the string gets transmitted
2 Undefined (cannot be answered without knowledge of the receive function)

1i. e., as unsigned int resp. uint16_t

Distributed Systems Page 6 of 20

MOCK
EXAM

Student number:

(d) (2)Put the content of the message which has been sent over the socket into the form below.
Assume that the function gets called as shown below on an x86 architecture, i. e., a little
endian system:
send_str ing (sock , " He l l o \n ") ;

Note: One box represents one byte (8 bit). Put either a double digit hexadecimal number or
an ASCII character in each box.

(e) (3)Outline an appropriate receive function below. On success the function shall return a pointer
to the null-terminated received string. The required memory for the string should be allocated
with malloc(). In the error case the function shall return NULL and not allocate any memory.
(For the reception of a message the well-known system call read(int sock, uint8_t
*buffer, size_t length) shall be used.)
#include (l i k e above)

char ∗ read_str ing (int sock)
{

int16_t length_hdr ;

char ∗ r e t v a l ;

return r e t v a l ;
}

(f) (2)As long as all participating nodes use the same architecture (here: x86) everything works as
expected. As soon as one of the nodes (either sender or receiver) uses a SPARC or PowerPC
processor (big endian architectures!), errors occur. Why? Which behavior would you expect
for the transmitted string in task d) on the receiver side? Would the receiver crash?

Distributed Systems Page 7 of 20

MOCK
EXAM

Student number:

(g) (2)How would you solve this problem? Complete the code below by using the one or multiple of
the following functions: htons(), htonl(), ntohs(), ntohl(). Describe your changes in one
or two sentences.
Description:

#include (l i k e above)

int send_str ing (int sock , char ∗ s t r i n g)
{

int l en = s t r l e n (s t r i n g) ;

int16_t length_hdr = len ;

uint8_t ∗message = mal loc (l en + s izeof (length_hdr)) ;

memcpy(&message [0] , &length_hdr , s izeof (length_hdr)) ;

memcpy(&message [s izeof (length_hdr)] , s t r i ng , l en) ;

i f (wr i t e (sock , message , l en + s izeof (length_hdr)) < 0)
{

return −1;
}

f r e e (message) ;

return 0 ;
}

Distributed Systems Page 8 of 20

MOCK
EXAM

Student number:

Question 4 Points: . (max. 5 points)

Consider the following network protocols
Mark in the following table which of the given network protocols work connection-oriented or
connection-less.

Abb. Protocol conn.-oriented conn.-less
ICMP Internet Control Message Protocol
IP Internet Protocol
SMTP Simple Mail Transfer Protocol
TCP Transmission Control Protocol
HTTP HyperText Transfer Protocol
UDP User Datagram Protocol
FTP File Transfer Protocol
NTP Network Time Protocol
TELNET Remote Terminal Protocol
SSH Secure Shell

Distributed Systems Page 9 of 20

MOCK
EXAM

Student number:

Question 5 Points: . (max. 12)

Consider the following two C code snippets of function pairs for connection-less message
exchange with direct addressing:

SYNOPSIS A: SYNOPSIS B:
#include <m e s s a g e i n t e r f a c e . h>

/∗∗
∗ Send message po in ted to by
∗ <msg> to <peer>
∗/

void SEND_A(
node_t peer ,
const message_t ∗msg) ;

/∗∗
∗ Receive message from anyone .
∗ Store i t to b u f f e r po in ted to
∗ by <msg>, s t o r e o r i g i n a t o r
∗ o f message to <peer>
∗/

void RECEIVE_A(
node_t ∗ peer ,
message_t ∗msg) ;

#include <m e s s a g e i n t e r f a c e . h>

/∗∗
∗ Send message po in ted to by
∗ <msg> to <peer>
∗/

void SEND_B(
node_t peer ,
const message_t ∗msg) ;

/∗∗
∗ Receive message from <peer >,
∗ s t o r e i t to b u f f e r po in ted to
∗ by <msg>
∗/

void RECEIVE_B(
node_t peer ,
message_t ∗msg) ;

(Assume that a header file messageinterface.h defines the type node_t for addressing a peer and
message_t for the structure of message.)
(a) (2)Are we dealing with implicitly typed, explicitly typed, or untyped messages? (Don’t forget to

explain why!)

(b) (1)Why is the pointer to the message (msg) for the SEND functions marked as const but not for
the RECEIVE functions?

(c) (2)Which of the given code snippets is suited for the use in a server and which is suited for a
client?

Distributed Systems Page 10 of 20

MOCK
EXAM

Student number:

(d) (4)The following outlines the main application of a simple RPC server. Put the calls to the
selected function pairs at the correct spots and complete the server application in the process.
#include <m e s s a g e i n t e r f a c e . h>

stat ic int fun ;

void main ()
{

node_t c l i e n t _ i d ;
message_t message_buffer ;
int r e s u l t ;
int server_running = 1 ;
unsigned int arg1 , arg2 , arg3 ;

while (server_running)
{

fun = server_unmarshal(&message_buffer , &arg1 , &arg2 , &arg3) ;

r e s u l t = ca l l_server_fun (arg1 , arg2 , arg3) ;

server_marshal (&message_buffer , r e s u l t) ;

}

}

Distributed Systems Page 11 of 20

MOCK
EXAM

Student number:

/∗∗
∗ Helper func t i on f o r invok ing s e r v e r s e r v i c e s .
∗ For s i m p l i c i t y , a l l s e r v i c e s have i d e n t i c a l API .
∗/

int ca l l_server_fun (int arg1 , int arg2 , int arg3)
{

int r e s u l t ;
switch (fun)
{

case 0 :
r e s u l t = fun0 (arg1 , arg2 , arg3) ;
break

case 1 :
r e s u l t = fun1 (arg1 , arg2 , arg3) ;
break

case 2 :
r e s u l t = fun2 (arg1 , arg2 , arg3) ;
break

.
case X:

r e s u l t = funX (arg1 , arg2 , arg3) ;
break

}
return r e s u l t ;

}

Distributed Systems Page 12 of 20

MOCK
EXAM

Student number:

(e) (1)Assume that the communication channel has a capacity of N messages.2 How many requests
by clients can the server handle in parallel? (Don’t forget to explain why!)

(f) (2)Could the number of client requests which can be handled concurrently increased by running
the while() in parallel multiple times – for instance, by using threads. Why or why not?
Note: The function call_server_fun() as specified above remains unchanged.

2I.e., SEND() can be called up to N times before the function blocks (N ∈ N, N > 0).

Distributed Systems Page 13 of 20

MOCK
EXAM

Student number:

Question 6 Points: . (max. 11)

Describe the principle of a challenge-response protocol for authentication using public keys:
the nodes A and B have the following objects and methods available:

• Private key of A: K−
A

• Public key of A: K+
A

• Cipher: E()
• Random number generator to create challenges: R()

Can be used to generate random numbers, which can be used as challenges, e. .g., ChA = R().
Each call to R() provides a new, non-predictable number.

A B

K−
A K−

B

K+
B K+

A

KA,B KA,B

The communication is initiated at node A by sending a communication request "‘A"’ to B (see
above).
(a) (1)Is a symmetric or asymmetric encryption used for authentication? Why?

(b) (2)Complete the diagram above with the required messages.
(c) (2)After the depicted communication A and B can communicate in an encrypted form. Which

key is used for this and who has generated it?

(d) (1)Do A and B have to exchange information (e. g., keys) before the depicted communication?
Why or why not?

Distributed Systems Page 14 of 20

MOCK
EXAM

Student number:

(e) (2)Can an attacker that overhears the first message repeat this message? Which benefit would
they have?

(f) (2)What must be assured in order to consider the method secure?

(g) (1)Which protection goals are accomplished with the challenge-response protocol?
2 Confidentiality
2 Privacy
2 Integrity
2 Authenticity
2 Accountability
2 Availability

Distributed Systems Page 15 of 20

MOCK
EXAM

Student number:

Question 7 Points: . (max. 8)

(a) (2)Describe how to peers can communicate with each other without knowing each others
addresses using the MQTT protocol.

(b) (1)Describe how a MQTT client can select the required error semantics for the application.

(c) (3)Inspect the following code and describe what it does. What prerequisite needs to be fulfilled?
Check if the logic of the contains makes sense.
const char ∗ t o p i c = "roomman/room/+/ re s e rved " ;
MQTTClient_message pubmsg = MQTTClient_message_initial izer ;
pubmsg . payload = " true " ;
pubmsg . pay loadlen = s t r l e n (msg) + 1 ;
MQTTClient_publishMessage (c l i e n t , top ic , &pubmsg , &token) ;
MQTTClient_waitForCompletion (c l i e n t , token , ROOMMAN_MQTT_TIMEOUT) ;

The function MQTTClient_publishMessage() can be used to publish the message included in
pubmsg. The parameter client points to MQTT client object. We assume that it has been
properly initialized before. The parameter topic is used to specify the name of the topic. The
parameter token is an output parameter and irrelevant for this task.

(d) (2)The paho MQTT library provides an API to publish messages asynchronously or
synchronously. For subscribing it only provides an asynchronous API. Explain the reasoning
for this design decision.

Distributed Systems Page 16 of 20

MOCK
EXAM

Student number:

Question 8 Points: . (max. 9)

(a) (4)Name at least four problems which needs to be solved by a distributed file system:

(b) (1)In a distributed system the Java runtime environment (JRE) shall be provided via a
distributed file system. Which consistency semantics would you recommend?

(c) (2)For which cases would you recommend a stateful server in a distributed file system?

(d) (2)Assume that the directory /home is exported by an NFS and an AFS server. Explain how this
directory may become accessible on a corresponding client for both systems.

Distributed Systems Page 17 of 20

MOCK
EXAM

Student number:

Question 9 Points: . (max. 8)

Consider the following interface definition for a SunRPC based application:
struct roomman_create_room_arg {

char building_name [3 2] ;
char room_name [3 2] ;
uint16_t capac i ty ;

} ;

struct roomman_lookup_arg {
char building_name [3 2] ;
char room_name [3 2] ;

} ;

struct roomman_update_capacity_arg {
int32_t r i d ;
uint16_t capac i ty ;

} ;

program ROOMMAN_CREATE_PROG {
v e r s i o n ROOMMAN_CREATE_VERS {

int CREATE_ROOM(roomman_create_room_arg) = 1 ;
} = 1 ;

} = 0 x47110001 ;

program ROOMMAN_LOOKUP_PROG {
v e r s i o n ROOMMAN_LOOKUP_VERS {

int LOOKUP(roomman_lookup_arg) = 1 ;
} = 1 ;

} = 0 x47110002 ;

program ROOMMAN_DELETE_PROG {
v e r s i o n ROOMMAN_DELETE_VERS {

int DELETE(int) = 5 ;
} = 1 ;

} = 0 x47110003 ;

program ROOMMAN_UPDATE_PROG {
v e r s i o n ROOMMAN_UPDATE_VERS {

int UPDATE(roomman_update_capacity_arg) = 6 ;
} = 1 ;

} = 0 x47110004 ;

(a) (2)Describe the necessary steps to create client application based on this interface description.

(b) (1)Which service needs to be running on the host which runs the RPC server?

(c) (1)Describe the function of numbers 0x47110001, 0x47110002

Distributed Systems Page 18 of 20

MOCK
EXAM

Student number:

(d) (2)How many services does the above interface description provide? Explain whether you would
have designed the interface description similarly or what you would change.

(e) (2)Instead of char building_name[32] the parameter could be specified as
string building_name<32>. Explain the difference and name an advantage for one of the
solutions.

Distributed Systems Page 19 of 20

MOCK
EXAM

Student number:

Question 10 Points: . (max. 4)

Given a UNIX system with a clock which has a positive drift with respect to a reference time. The
clock runs stable with a high resolution.
(a) (1)The clock is used by multiple processes in order to assign timestamps to events. Does the

clock fulfills the clock condition?

(b) (2)Periodically an accurate timestamp from a reference time source is obtained. Which
possibilities exist to manipulate the clock using the provided timestamp of the reference time
source in order to get closer to the reference time?

(c) (1)Which of the possibilities from task b would effect the clock condition?

Distributed Systems Page 20 of 20

