
Process Switching Scheduling Methods (Algorithms)

Operating Systems

Scheduler and Dispatcher

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences

Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

November 29, 2022

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 1/49

https://teaching.dahahm.de

Process Switching Scheduling Methods (Algorithms)

Agenda

1 Process Switching
Dispatcher
Scheduling

2 Scheduling Methods (Algorithms)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 2/49

Process Switching Scheduling Methods (Algorithms)

Agenda

1 Process Switching
Dispatcher
Scheduling

2 Scheduling Methods (Algorithms)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 3/49

Process Switching Scheduling Methods (Algorithms)

Agenda

1 Process Switching
Dispatcher
Scheduling

2 Scheduling Methods (Algorithms)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 4/49

Process Switching Scheduling Methods (Algorithms)

Dispatching and Scheduling

Tasks of multitasking operating systems are among others:

Dispatching: Assign the CPU to another process (process switching)
Scheduling: Determine the order of process execution and the exact
point in time when the process switch occurs

The dispatcher carries out the state transitions of the processes

Performance

The scheduler may run . . .

periodically (e.g., on Linux)
for every interrupt (e.g., on RIOT)

⇒ Is called frequently and hence, should be as efficient as possible

Every call to the scheduler may trigger the dispatcher to run

⇒ Must be efficient as well

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 5/49

Process Switching Scheduling Methods (Algorithms)

The Dispatcher

We already know. . .

During process switching, the dispatcher removes the CPU from the running process and assigns it to the
process, which is the first one in the queue

For transitions between the states ready and blocked, the dispatcher removes the corresponding process
control blocks from the status lists and accordingly inserts them new

Transitions from or to the state running always imply a switch of the process, which is currently executed by
the CPU

If a process switches into the state running or from the state running to
another state, the dispatcher needs to. . .

back up the context (register contents) of the executed process in the
process control block

assign the CPU to another process

import the context (register contents) of the process, which will be
executed next, from its process control block

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 6/49

Process Switching Scheduling Methods (Algorithms)

Idle Process

Modern processors provide an idle
state

If no process is in the state ready an
idle process gets the CPU assigned

The idle process is always ready to
run and has the lowest priority

On most operating systems the idle
process puts the CPU into a
power-saving mode

For each CPU core (in hyperthreading
systems for each logical CPU) a
system idle process exists

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 7/49

Process Switching Scheduling Methods (Algorithms)

Agenda

1 Process Switching
Dispatcher
Scheduling

2 Scheduling Methods (Algorithms)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 8/49

Process Switching Scheduling Methods (Algorithms)

Scheduling Criteria and Scheduling Strategies

The scheduler of an operating system specifies the execution order of
the processes in the state ready

The best scheduling strategy depends on the use case
No scheduling strategy. . .

is optimally suited for every system and

can take all scheduling criteria optimal into account.

The scheduling strategy is always a tradeoff between different
scheduling criteria

Scheduling criteria

Scheduling criteria are among others CPU load, response time (latency),
turnaround time, throughput, efficiency, real-time behavior

(compliance with deadlines), waiting time, overhead, fairness,
consideration of priorities, even resource utilization. . .

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 9/49

Process Switching Scheduling Methods (Algorithms)

Non-preemptive and preemptive Scheduling

Two types of scheduling strategies exist
Non-preemptive scheduling or cooperative scheduling

Any running process will either run until completion or voluntarily yields

Problematic: A process may occupy the CPU for as long as it wants

Examples: Windows 3.x, MacOS 8/9, Windows 95/98/Me (for 16-Bit
processes)

Preemptive scheduling

The CPU may be removed from a process before its execution is

completed

Drawback: Higher overhead compared with non-preemptive scheduling

Examples: Linux, MacOS X, Windows 95/98/Me (for 32-Bit
processes), Windows NT (incl. XP/Visa/7/8/10/11), FreeBSD, RIOT

Preemptive Scheduling in RIOT

In RIOT a running process is only removed from the run queue if a process with a higher priority becomes ready to
run.

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 10/49

Process Switching Scheduling Methods (Algorithms)

Performance Metrics

Waiting Time The time a process has to wait before getting the CPU
assigned

CPU Time The time that the process needs to access the CPU to complete
its execution

Runtime = „lifetime“ = time period between the creation and the
termination of a process = (CPU time + waiting time)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 11/49

Process Switching Scheduling Methods (Algorithms)

Impact on the overall Performance of a Computer

This example demonstrates the impact of the scheduling method used
on the overall performance of a computer

The processes PA and PB are to be executed one after the other

Process CPU

time

A 24 ms

B 2 ms

If a short-running process runs before a long-running
process, the runtime and waiting time of the long
process process get slightly worse

If a long-running process runs before a short-running
process, the runtime and waiting time of the short
process get significantly worse

Execution Runtime Average Waiting time Average

order A B runtime A B waiting time

PA,PB 24 ms 26 ms
24+26

2
= 25 ms 0 ms 24 ms

0+24
2

= 12ms

PB ,PA 26 ms 2 ms
2+26

2
= 14 ms 2 ms 0 ms

0+2
2

= 1 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 12/49

Process Switching Scheduling Methods (Algorithms)

Agenda

1 Process Switching
Dispatcher
Scheduling

2 Scheduling Methods (Algorithms)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 13/49

Process Switching Scheduling Methods (Algorithms)

Scheduling Methods

Several scheduling methods (algorithms) exist

Each method tries to comply with the well-known scheduling criteria
and principles in varying degrees

Some scheduling methods:

Priority-driven scheduling
First Come First Served (FCFS) = First In First Out (FIFO)
Last Come First Served (LCFS)
Round Robin (RR) with time quantum
Shortest/Longest Job First (SJF/LJF)
Shortest/Longest Remaining Time First (SRTF/LRTF)
Highest Response Ratio Next (HRRN)
Earliest Deadline First (EDF)
Static multilevel scheduling
Multilevel feedback scheduling
Completely Fair Scheduler (CFS)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 14/49

Process Switching Scheduling Methods (Algorithms)

Modern operating systems often implement several scheduling methods

In Linux e.g., each processes is assigned to a specific scheduling method

For real-time processes. . .

SCHED_FIFO (priority-driven scheduling, non-preemptive)
SCHED_RR (preemptive)
SCHED_DEADLINE (EDF scheduling, preemptive)

For „normal“ processes. . .
SCHED_OTHER (default Linux time-sharing scheduling) implemented
as. . .

Multilevel Feedback Scheduling (until Kernel 2.4)
O(1) scheduler (Kernel 2.6.0 until 2.6.22)
Completely Fair Scheduler (since Kernel 2.6.23)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 15/49

Process Switching Scheduling Methods (Algorithms)

Priority-driven Scheduling

Processes are executed according to their priority (= importance or
urgency)

The highest priority process in state ready gets the CPU assigned

The priority may depend on various criteria, such as static (assigned)
priority level, required resources, rank of the user, demanded real-time
criteria,. . .

Can be preemptive and non-preemptive

The priority values can be assigned static or dynamic

Static priorities remain unchanged throughout the lifetime of a process
and are often used in real-time systems
Dynamic priorities are adjusted from time to time
=⇒ Multilevel feedback scheduling (see slide 43)

Risk of (static) priority-driven scheduling: Processes with low priority
values may starve (=⇒ this is not fair)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 16/49

Process Switching Scheduling Methods (Algorithms)

Priority-driven Scheduling

Source: William Stallings. Operating Systems. 4th edition. Prentice Hall (2001). P.401

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 17/49

Process Switching Scheduling Methods (Algorithms)

Priority-driven Scheduling – Example

Four processes shall be
processed on a system with a
single CPU

All processes are at time
point 0 in state ready

Execution order of the
processes as Gantt chart
(timeline)

Process CPU time Priority

A 8 ms 15

B 4 ms 3

C 7 ms 4

D 13 ms 8

Runtime of the processes

Process A B C D

Runtime 32 4 11 24
Avg.

runtime = 32+4+11+24
4

= 17.75 ms

Waiting time of the processes

Process A B C D

Waiting time 24 0 4 11
Avg. waiting time = 24+0+4+11

4
= 9.75 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 18/49

Process Switching Scheduling Methods (Algorithms)

The RIOT Scheduler – Example

B

Time

R RT1 - Priority 0 B B

T2 - Priority 4

R RT4 - Priority 9 P P

T3 - Priority 4

B B

P

P

S

P P

P = Pending
B = Blocked
S = Sleeping
R = Running

R RIDLE - Priority 15 PP P

B

A B C D F G H I JE

B

R

K

X Event

RR

R R

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 19/49

Process Switching Scheduling Methods (Algorithms)

First Come First Served (FCFS)

Works according to the principle First In First Out (FIFO)

Running processes are not interrupted

It is non-preemptive scheduling

FCFS is fair

All processes are executed

The average waiting time may be very high under certain
circumstances

Processes with short execution time may need to wait for a long time if
processes with long execution times have arrived before

FCFS/FIFO can be used for =⇒ batch processing

FIFO is used in Linux for non-preemptive real-time processes

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 20/49

Process Switching Scheduling Methods (Algorithms)

First Come First Served – Example

Four processes shall
be processed on a
system with a single
CPU

Execution order of
the processes as
Gantt chart

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 1 ms

C 7 ms 3 ms

D 13 ms 5 ms

Runtime of the processes

Process A B C D

Runtime 8 11 16 27
Avg.

runtime = 8+11+16+27

4
= 15.5 ms

Waiting time of the processes

Process A B C D

Waiting time 0 7 9 14
Avg. waiting time = 0+7+9+14

4
= 7.5 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 21/49

Process Switching Scheduling Methods (Algorithms)

Last Come First Served (LCFS)

Works according to the principle Last In First Out (LIFO)

Processes are executed in the reverse order of creation

The concept is equal with a stack

Running processes are not interrupted

The processes have the CPU assigned until process termination or
voluntary resigning

LCFS is not fair

The case of continuous creation of new processes, the old processes are
not taken into account and thus may starve

FCFS/FIFO can be used for =⇒ batch processing

Is seldom used in pure form

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 22/49

Process Switching Scheduling Methods (Algorithms)

Last Come First Served – Example

Four processes shall
be processed on a
system with a single
CPU

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 1 ms

C 7 ms 3 ms

D 13 ms 5 ms

Execution order of the processes as Gantt chart

Runtime of the processes

Process A B C D

Runtime 8 31 25 16

8+31+25+16
4

= 20 ms

Waiting time of the processes

Process A B C D

Waiting time 0 27 18 3

0+27+18+3
4

= 12 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 23/49

Process Switching Scheduling Methods (Algorithms)

Last Come First Served – Preemptive Variant (LCFS-PR)

A new process in state ready replaces the currently executed processes
from the CPU

Processes, which get the CPU resigned, are inserted at the end of the
queue
If no new processes are created, the running process has the CPU
assigned until process termination or voluntary resigning

Prefers processes with a short execution time

The execution of a process with a short execution time may be
completed before new process are created
Processes with a long execution time may get the CPU resigned several
times and thus significantly delayed

LCFS-PR is not fair

Processes with a long execution time may never get the CPU assigned
and starve

Is seldom used in pure form

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 24/49

Process Switching Scheduling Methods (Algorithms)

Last Come First Served Example – Preemptive Variant

Four processes shall
be processed on a
system with a single
CPU

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 1 ms

C 7 ms 3 ms

D 13 ms 5 ms

Execution order of the processes as Gantt chart

Runtime of the processes

Process A B C D

Runtime 32 24 20 13

32+24+20+13
4

= 22.25 ms

Waiting time of the processes

Process A B C D

Waiting time 24 20 13 0

24+20+13+0
4

= 14.25 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 25/49

Process Switching Scheduling Methods (Algorithms)

Round Robin – RR (1/2)

Time slices with a fixed duration (may be ∞!)
are specified

The processes are queued in a cyclic queue
according to the FIFO principle

The first process of the queue gets the CPU
assigned for the duration of a time slice
After the expiration of the time slice, the
process gets the CPU resigned and it is
positioned at the end of the queue
Whenever a process is completed successfully,
it is removed from the queue

New processes are inserted at the end of the

queue

The CPU time is distributed fair among the processes

RR with time slice size ∞ behaves like −→ FCFS

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 26/49

Process Switching Scheduling Methods (Algorithms)

Round Robin – RR (2/2)

The longer the execution time of a process is, the more rounds are
required for its complete execution

The size of the time slices influences the performance of the system

The shorter they are, the more process switches must take place
=⇒ Increased overhead
The longer they are, the more gets the simultaneousness lost
=⇒ The system hangs/becomes jerky

The size of the time slices is usually in single or double-digit millisecond
range

Prefers processes with short execution time

Preemptive scheduling method

Round Robin scheduling can be used for interactive systems

Round Robin is used in Linux for preemptive real-time processes

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 27/49

Process Switching Scheduling Methods (Algorithms)

Round Robin – Example

Four processes shall be
processed on a system with a
single CPU

All processes are at time
point 0 in state ready

Time quantum q = 1 ms

Execution order of the
processes as Gantt chart

Process CPU time

A 8 ms

B 4 ms

C 7 ms

D 13 ms

Runtime of the processes

Process A B C D

Runtime 26 14 24 32
Avg.

runtime = 26+14+24+32

4
= 24 ms

Waiting time of the processes

Process A B C D

Waiting time 18 10 17 19
Avg. waiting time = 18+10+17+19

4
= 16 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 28/49

Process Switching Scheduling Methods (Algorithms)

Shortest Job First (SJF) / Shortest Process Next (SPN)

The process with the shortest execution time get the CPU assigned first
Non-preemptive scheduling method
Problem: The runtime of each process needs to be known in advance
Solution: Execution time is estimated by analyzing its behavior in the
past
SJF is not fair

Prefers processes, which have a short execution time
Processes with a long execution time may get the CPU assigned only
after a very long waiting period or starve

If the execution time of the processes can be estimated, SJF can be
used for batch processing)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 29/49

Process Switching Scheduling Methods (Algorithms)

Shortest Job First – Example

Four processes shall be processed
on a system with a single CPU

All processes are at time point 0
in state ready

Process CPU time

A 8 ms

B 4 ms

C 7 ms

D 13 ms

Execution order of the processes as Gantt chart

Runtime of the processes

Process A B C D

Runtime 19 4 11 32

19+4+11+32
4

= 16.5 ms

Waiting time of the processes

Process A B C D

Waiting time 11 0 4 19

11+0+4+19
4

= 8.5 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 30/49

Process Switching Scheduling Methods (Algorithms)

Shortest Remaining Time First (SRTF)

Preemptive SJF is called Shortest Remaining Time First (SRTF)

If a new process is created, the remaining execution time of the running
process is compared with each process in state ready in the queue

If the currently running process has the shortest remaining execution
time, the CPU remains assigned to this process
If one or more processes in state ready have a shorter remaining
execution time, the process with the shortest remaining execution time
gets the CPU assigned

Estimation of runtime is required

As long as no new process is created, no running process gets
interrupted

The processes in state ready are compared with the running process
only when a new process is created!

Processes with a long execution time may starve (=⇒ not fair)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 31/49

Process Switching Scheduling Methods (Algorithms)

Shortest Remaining Time First – Example

Four processes shall
be processed on a
system with a single
CPU

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 3 ms

C 7 ms 16 ms

D 13 ms 11 ms

Execution order of the processes as Gantt chart

Runtime of the processes

Process A B C D

Runtime 12 4 7 21

12+4+7+21
4

= 11 ms

Waiting time of the processes

Process A B C D

Waiting time 4 0 0 8

4+0+0+8
4

= 3 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 32/49

Process Switching Scheduling Methods (Algorithms)

Longest Job First (LJF)

The process with the longest execution time get the CPU assigned first

Non-preemptive scheduling method

Estimation of runtime is required

LJF is not fair

Prefers processes, which have a long execution time
Processes with a short execution time may get the CPU assigned only
after a very long waiting period or starve

If the execution time of the processes can be estimated, LJF can be
used for batch processing)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 33/49

Process Switching Scheduling Methods (Algorithms)

Longest Job First – Example

Four processes shall be processed
on a system with a single CPU

All processes are at time point 0
in state ready

Process CPU time

A 8 ms

B 4 ms

C 7 ms

D 13 ms

Execution order of the processes as Gantt chart

Runtime of the processes

Process A B C D

Runtime 21 32 28 13

21+32+28+13
4

= 23.5 ms

Waiting time of the processes

Process A B C D

Waiting time 13 28 21 0

13+28+21+0
4

= 15.5 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 34/49

Process Switching Scheduling Methods (Algorithms)

Longest Remaining Time First (LRTF)

Preemptive LJF is called Longest Remaining Time First (LRTF)

If a new process is created, the remaining execution time of the running
process is compared with each process in state ready in the queue

If the currently running process has the longest remaining execution
time, the CPU remains assigned to this process
If one or more processes in state ready have a longer remaining
execution time, the process with the longest remaining execution time
gets the CPU assigned

Estimation of runtime is required

As long as no new process is created, no running process gets
interrupted

The processes in state ready are compared with the running process
only when a new process is created!

Processes with a short duration may starve (=⇒ not fair)

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 35/49

Process Switching Scheduling Methods (Algorithms)

Longest Remaining Time First – Example

Four processes shall
be processed on a
system with a single
CPU

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 6 ms

C 7 ms 21 ms

D 13 ms 11 ms

Execution order of the processes as Gantt chart

Runtime of the processes

Process A B C D

Runtime 32 4 7 20

32+4+7+20
4

= 15.75 ms

Waiting time of the processes

Process A B C D

Waiting time 24 0 0 7

24+0+0+7
4

= 7.75 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 36/49

Process Switching Scheduling Methods (Algorithms)

Highest Response Ratio Next (HRRN)

Fair variant of SJF/SRTF/LJF/LRTF
Takes the age of the process into account in order to avoid starvation

The response ratio is calculated for each process

Response ratio =
Estimated execution time + Waiting time

Estimated execution time

Response ratio value of a process after creation: 1.0
The value rises fast for short processes
Objective: Response ratio should be as small as possible for each
process

Then the scheduling operates efficiently

After termination of a process or if a process becomes blocked, the
CPU is assigned to the process with the highest response ratio

Just as with SJF/SRTF/LJF/LRTF, the execution times of the
processes must be estimated via by statistical recordings

It is impossible that processes starve =⇒ HRRN is fair
Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 37/49

Process Switching Scheduling Methods (Algorithms)

Earliest Deadline First (EDF)

Used in real-time operating operating systems (RTOS)

Objective: processes should comply with their deadlines when possible

Processes in ready state are arranged according to their deadline

The process with the closest deadline gets the CPU assigned next

The queue is reviewed and reorganized whenever. . .

a new process switches into state ready

or an active process terminates

Can be implemented as preemptive and non-preemptive scheduling

Preemptive EDF can be used in real-time operating systems
Non-preemptive EDF can be used for batch processing

EDF is used in Linux for preemptive real-time processes

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 38/49

Process Switching Scheduling Methods (Algorithms)

Earliest Deadline First – Example

Four processes shall be
processed on a system with a
single CPU

All processes are at time
point 0 in state ready

Execution order of the
processes as Gantt chart

Process CPU time Deadline

A 8 ms 25

B 4 ms 18

C 7 ms 9

D 13 ms 34

Runtime of the processes

Process A B C D

Runtime 19 11 7 32
Avg.

runtime = 19+11+7+32
4

= 17.25 ms

Waiting time of the processes

Process A B C D

Waiting time 11 7 0 19
Avg. waiting time = 11+7+0+19

4
= 9.25 ms

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 39/49

Process Switching Scheduling Methods (Algorithms)

Multilevel Scheduling

With each scheduling policy, compromises concerning the different
scheduling criteria must be made

Procedure in practice: Several scheduling strategies are combined
=⇒ Static or dynamic multilevel scheduling

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 40/49

Process Switching Scheduling Methods (Algorithms)

Static Multilevel Scheduling

The list of processes of ready state is split into multiple sublists

For each sublist, a different scheduling method may be used

The sublists have different
priorities or time multiplexes
(e.g., 80%:20% or
60%:30%:10%)

Makes it possible to separate
time-critical from
non-time-critical processes

Example of allocating the processes to different process classes
(sublists) with different scheduling strategies:

Priority Process class Scheduling method

3 Real-time processes (time-critical) Priority-driven scheduling
2 Interactive processes Round Robin
1 Compute-intensive batch processes First Come First Served

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 41/49

Process Switching Scheduling Methods (Algorithms)

Static Multilevel Scheduling (2/2)

Example of allocating the processes to different process classes
(sublists) with different scheduling strategies:

Priority Process class Scheduling method

3 Real-time processes (time-critical) Priority-driven scheduling
3 Interactive processes Round Robin
2 I/O-intensive processes Round Robin
1 Compute-intensive batch processes First Come First Served

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 42/49

Process Switching Scheduling Methods (Algorithms)

Multilevel Feedback Scheduling (1/2)

It is impossible to predict the execution time precisely in advance

Solution: Processes, which utilized much execution time in the past,
get sanctioned

Multilevel feedback scheduling works with multiple queues

Each queue has a different priority or time multiplex

(e.g., 70%:15%:10%:5%)

Each new process is added to the top queue

This way it has the highest priority

Each queue uses Round Robin

If a process returns the CPU on voluntary basis, it is added to the same
queue again
If a process utilized its entire time slice, it is inserted in the next lower
queue, with has a lower priority

The priorities are therefore dynamically assigned with this method

Multilevel feedback scheduling is preemptive scheduling

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 43/49

Process Switching Scheduling Methods (Algorithms)

Multilevel Feedback Scheduling (2/2)

Benefit:
No complicated
estimations!

New processes are

quickly assigned to a

priority category

Prefers new processes over
older (longer-running)
processes

Processes with many I/O operations are preferred because they
typically yield when waiting for I/O

Older, longer-running processes are delayed

Source: William Stallings. Operating Systems. 4th edition. Prentice Hall (2001). P.413

Many modern operating systems use variants of multilevel feedback scheduling for the scheduling of the processes.
Examples: Linux for „normal“ processes (until Kernel 2.4), Mac OS X, FreeBSD, NetBSD and the Windows NT family

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 44/49

Process Switching Scheduling Methods (Algorithms)

Completely Fair Scheduler (Linux since 2.6.23) – Part 1/3

The kernel implements a
CFS scheduler for every
CPU core and maintains a
variable vruntime (virtual
runtime) for every
SCHED_OTHER process

The value represents a
virtual processor runtime
in nanoseconds

vruntime indicates how long the particular process has already used the
CPU core

The process with the lowest vruntime gets access to the CPU core next

The management of the processes is done using a red-black tree
(self-balancing binary search tree)

The processes are sorted in the tree by their vruntime values

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 45/49

Process Switching Scheduling Methods (Algorithms)

Completely Fair Scheduler (Linux since 2.6.23) – Part 2/3

Goal: All processes should
get a similar (fair) share of
computing time of the CPU
core they are assigned to
=⇒ For n processes, each
process should get 1/n of
the CPU time

If a process got the CPU core assigned, it can run until its vruntime

value has reached the targeted portion of 1/n of the available CPU time

The scheduler aims for an equal vruntime value for all processes

The CFS scheduler only takes care of the scheduling of the „normal“ (non-real-time) processes
that are assigned to the scheduling method SCHED_OTHER

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 46/49

Process Switching Scheduling Methods (Algorithms)

Completely Fair Scheduler (Linux since 2.6.23) – Part 3/3

If a process gets replaced
from the CPU core, the
vruntime value is increased
by the time the process did
run on the CPU core

The nodes (processes) in
the tree move continuously
from right to left
=⇒ fair distribution of
CPU resources
The scheduler takes into account the static process priorities (nice
values) of the processes

The vruntime values are weighted differently depending on the nice

value

In other words: The virtual clock can run at different speeds

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 47/49

Process Switching Scheduling Methods (Algorithms)

Classic and modern Scheduling Methods

Scheduling Fair CPU time Takes priorities

NP P must be known into account

Priority-driven scheduling X X no no yes
First Come First Served = FIFO X yes no no
Last Come First Served X X no no no
Round Robin X yes no no
Shortest/Longest Job First X no yes no
Shortest Remaining Time First X no yes no
Longest Remaining Time First X no yes no
Highest Response Ratio Next X yes yes no
Earliest Deadline First X X yes no no
Static multilevel scheduling X no no yes (static)
Multilevel feedback scheduling X yes no yes (dynamic)
Completely Fair Scheduler X yes no yes

NP = non-preemptive scheduling, P = preemptive scheduling

A scheduling method is „fair“ when each process gets the CPU assigned at some point

It is impossible to calculate the execution time precisely in advance

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 48/49

Process Switching Scheduling Methods (Algorithms)

You should now be able to answer the following
questions:

What steps does the dispatcher need to
carry out for switching between processes?

What is scheduling?

How do preemptive scheduling and
non-preemptive scheduling work?

Explain the functioning of several common
scheduling methods?

How does scheduling in modern operating
systems works in detail?

Prof. Dr. Oliver Hahm – Operating Systems – Scheduler and Dispatcher – WS 22/23 49/49

	Process Switching
	Scheduling Methods (Algorithms)

