
Prof. Dr. Oliver Hahm
Operating Systems (WS 22/23)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 5

Exercise 1 (Interrupts)

1. What are interrupts?

2. What is the interrupt vector?

3. What are exceptions?

4. What happens, if during the handling of an interrupt, an additional interrupt
occurs?

Exercise 2 (Scheduling Strategies)

1. Why exists a system idle process in some operating systems?

2. Explain the difference between preemptive and non-preemptive scheduling.

Content: Topics of slide set 6+7 Page 1 of 8

Prof. Dr. Oliver Hahm
Operating Systems (WS 22/23)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

3. Name one drawback of preemptive scheduling.

4. Name one drawback of non-preemptive scheduling.

5. How does multilevel feedback scheduling work?

6. Which scheduling strategies are fair?
A scheduling method is „fair“ when each process gets the CPU assigned at
some point.

f Priority-driven scheduling
f First Come First Served
f Last Come First Served
f Shortest Job First
f Longest Job First

f Shortest Remaining Time First
f Longest Remaining Time First
f Round Robin with time quantum
f Highest Response Ratio Next
f Earliest Deadline First

7. Which scheduling strategies can operate preemptive?
f First Come First Served
f Shortest Job First
f Longest Job First
f Shortest Remaining Time First

f Longest Remaining Time First
f Round Robin with time quantum
f Static multilevel scheduling
f Multilevel feedback scheduling

8. Which scheduling strategies require an estimation of the CPU runtime
(= execution time)?
f Priority-driven scheduling
f First Come First Served
f Last Come First Served
f Shortest Job First
f Longest Job First

f Shortest Remaining Time First
f Longest Remaining Time First
f Round Robin with time quantum
f Highest Response Ratio Next
f Earliest Deadline First

Content: Topics of slide set 6+7 Page 2 of 8

Prof. Dr. Oliver Hahm
Operating Systems (WS 22/23)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 3 (Scheduling)

Process CPU time Priority
A 5 ms 4
B 10 ms 15
C 3 ms 12
D 6 ms 5
E 8 ms 7

Five processes shall be processed on a single CPU/core system. All processes are at
time point 0 in state ready. High priorities are characterized by high values.

Draw the execution order of the processes with a Gantt chart (timeline) for Round
Robin (time quantum q = 1 ms), FCFS, SJF, and priority-driven scheduling.

The Priority column in the table is only relevant for the priority-driven scheduling
and not for Round Robin or FCFS.

Calculate the average runtimes and average waiting times of the processes.

0 10 20 305 15 25

0 10 20 305 15 25

0 10 20 305 15 25

0 10 20 305 15 25

The CPU time is the time that the process needs to access the CPU to complete
its execution. Runtime = „lifetime“ = time period between the creation and the
termination of a process = (CPU time + waiting time).

Runtime A B C D E
RR
FCFS
SJF
Priority-driven scheduling

Content: Topics of slide set 6+7 Page 3 of 8

Prof. Dr. Oliver Hahm
Operating Systems (WS 22/23)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

i

RR (20 + 32 + 13 + 25 + 30) / 5 = 24 ms
FCFS (5 + 15 + 18 + 24 + 32) / 5 = 18, 8 ms
SJF (8 + 32 + 3 + 14 + 22) / 5 = 15, 8 ms
PS (5 + 29 + 32 + 11 + 19) / 5 = 19, 2 ms

Waiting time = time of a process being in state ready. Waiting time = runtime -
CPU time.

Waiting time A B C D E
RR
FCFS
SJF
Priority-driven scheduling

i

RR (15 + 22 + 10 + 19 + 22) / 5 = 17, 6 ms
FCFS (0 + 5 + 15 + 18 + 24) / 5 = 12, 4 ms
SJF (3 + 22 + 0 + 8 + 14) / 5 = 9, 4 ms
PS (0 + 19 + 29 + 5 + 11) / 5 = 12, 8 ms

Exercise 4 (Shell Scripts)

1. Program a shell script, which requests the user to select one of the four basic
arithmetic operations. After selecting a basic arithmetic operation, the user is
requested to enter two operands. Both operands are combined with each other
via the previously selected basic arithmetic operation and the result is printed
out in the following form:

<Operand1> <Operator> <Operand2> = <Result>

i
1 #!/ bin/sh
2
3 echo " Please enter the operator :"
4 read OPERATOR
5 if ["${ OPERATOR }" != "+" -a "${ OPERATOR }" != "-" -a "${

OPERATOR }" != "*" -a "${ OPERATOR }" != "/"]
6 then
7 echo "${ OPERATOR } is not a valid operator , please select +,

-, *, or /."
8 exit 1
9 fi

10
11 echo " Please enter the first operand :"

Content: Topics of slide set 6+7 Page 4 of 8

Prof. Dr. Oliver Hahm
Operating Systems (WS 22/23)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

12 read OPERAND1
13
14 echo " Please enter the second operand :"
15 read OPERAND2
16
17 case ${ OPERATOR } in
18 +) RESULT =$((OPERAND1 + OPERAND2)) ;;
19 -) RESULT =$((OPERAND1 - OPERAND2)) ;;
20 *) RESULT =$((OPERAND1 * OPERAND2)) ;;
21 /) RESULT =$((OPERAND1 / OPERAND2)) ;;
22 *) RESULT =0
23 exit 1 ;;
24 esac
25
26 echo " Result is ${ RESULT }"

Content: Topics of slide set 6+7 Page 5 of 8

Prof. Dr. Oliver Hahm
Operating Systems (WS 22/23)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

2. Modify the shell script from subtask 1 in a way that for each basic arithmetic
operation a separate function exists. These functions should be relocated into
an external function library and used for the calculations.

i
1 #!/ bin/sh
2
3 add () {
4 RESULT =$((OPERAND1 + OPERAND2))
5 }
6
7 sub () {
8 RESULT =$((OPERAND1 - OPERAND2))
9 }

10
11 mul () {
12 RESULT =$((OPERAND1 * OPERAND2))
13 }
14
15 div () {
16 RESULT =$((OPERAND1 / OPERAND2))
17 }
18
19 echo " Please enter the operator :"
20 read OPERATOR
21 if ["${ OPERATOR }" != "+" -a "${ OPERATOR }" != "-" -a "${

OPERATOR }" != "*" -a "${ OPERATOR }" != "/"]
22 then
23 echo "${ OPERATOR } is not a valid operator , please select +,

-, *, or /."
24 exit 1
25 fi
26
27 echo " Please enter the first operand :"
28 read OPERAND1
29
30 echo " Please enter the second operand :"
31 read OPERAND2
32
33 case ${ OPERATOR } in
34 +) add ${ OPERAND1 } ${ OPERAND2 } ;;
35 -) sub ${ OPERAND1 } ${ OPERAND2 } ;;
36 *) mul ${ OPERAND1 } ${ OPERAND2 } ;;
37 /) div ${ OPERAND1 } ${ OPERAND2 } ;;
38 *) RESULT =0
39 exit 1 ;;
40 esac
41
42 echo " Result is ${ RESULT }"

Content: Topics of slide set 6+7 Page 6 of 8

Prof. Dr. Oliver Hahm
Operating Systems (WS 22/23)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

3. Program a shell script, which prints out a certain number of random num-
bers up to a certain maximum value. After starting the shell script, it should
interactively query the values of these parameters:

• Maximum value, which must be in the number range from 10 to 32767.

• Desired number of random numbers.

i
1 #!/ bin/sh
2
3 echo " Please specify a range between 10 and 32767"
4 read RANGE
5 if [${RANGE} -lt 10 -o ${RANGE} -gt 32767]
6 then
7 echo " Number out of range"
8 exit 1
9 fi

10
11 echo " Please enter number of desired random numbers "
12 read COUNT
13
14 for ((i=1; i <= ${COUNT }; ++i))
15 do
16 echo $((RANDOM % RANGE))
17 done

4. Program a shell script, which creates the following empty files:

image0000.jpg, image0001.jpg, image0002.jpg, ..., image9999.jpg

i
1 #!/ bin/sh
2
3 for I in $(seq 9999)
4 do
5 touch image$ (printf "%04u" ${I}).jpg
6 done

5. Program a shell script, which renames the files from subtask 4 according to
this scheme:

OS_Exercise_<YEAR>_<MONTH>_<DAY>_0000.jpg
OS_Exercise_<YEAR>_<MONTH>_<DAY>_0001.jpg
OS_Exercise_<YEAR>_<MONTH>_<DAY>_0002.jpg
...
OS_Exercise_<YEAR>_<MONTH>_<DAY>_9999.jpg i

1 #!/ bin/sh
2
3 for I in $(seq 9999)
4 do

Content: Topics of slide set 6+7 Page 7 of 8

Prof. Dr. Oliver Hahm
Operating Systems (WS 22/23)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

5 NO_STR =$(printf "%04u" ${I})
6 mv image$ { NO_STR }. jpg OS_EXERCISE_$ (date +"%Y_%m_%d")_${

NO_STR }. jpg
7 done

Content: Topics of slide set 6+7 Page 8 of 8

