
OPERATING SYSTEMS
Processes

Prof. Dr. Oliver Hahm

2024-11-14

Operating Systems - Processes - WS 24/25

AGENDAAGENDA

Process Management

Process State Models

Create and Erase Processes

Structure of a UNIX Process in Memory

Operating Systems - Processes - WS 24/25 2 / 46

What is a process?

Operating Systems - Processes - WS 24/25 3 / 46

PROCESS MANAGEMENT

Operating Systems - Processes - WS 24/25 4 / 46

PROCESSPROCESS
Definition: Process

A process (lat. procedere = proceed, move forward) is an instance of a program

A program in execution

Dynamic objects which represent sequential activities in a computer system

While running every computer always run (at least) one process

Each process has assigned resources

A process can run in user or kernel mode

Source: Tanenbaum, Modern Operating Systems 4e, (c) 2014 Prentice-Hall, Inc. All rights reserved.

Operating Systems - Processes - WS 24/25 5 / 46

PROCESS RESOURCESPROCESS RESOURCES

Which resources are associated to a process?

Operating Systems - Processes - WS 24/25 6 / 46

PROCESS CONTEXTPROCESS CONTEXT

The resources associated with a process managed by the OS are called the

process context

The operating system manages three types of context information:

User context

Content of the allocated address space (virtual memory)

Hardware context

CPU registers

System context

Information, which stores the operating system about a process

Typically information about the hardware and system context are stored in

the process control block (PCB)

⟶

Operating Systems - Processes - WS 24/25 7 / 46

RECAP: REGISTERSRECAP: REGISTERS

What is a register?
Which registers do you remember?

Operating Systems - Processes - WS 24/25 8 / 46

HARDWARE CONTEXTHARDWARE CONTEXT
Definition: Hardware Context

The hardware context describes the content of the CPU registers during process

execution.

The following registers may need to be backed up when switching to another

process (context switch):

Program Counter (Instruction Pointer) – stores the memory address of the next instruction to

be executed

Stack pointer – stores the address at the current end of the stack

Base pointer – points to an address in the stack

Instruction register – stores the instruction, which is currently executed

Accumulator – stores operands for the ALU and their results

Page-table base Register – stores the address of the page table of the running process

Page-table length register – stores the length of the page table of the running process

⟶

Operating Systems - Processes - WS 24/25 9 / 46

SYSTEM CONTEXTSYSTEM CONTEXT
Definition: System Context

The information the operating system stores about a process is called the system

context. Each process can be uniquely identified by a subset of this information.

Examples:

Record in the process table,

Identifier (Process ID (PID)),

 State,

Information about parent or child processes,

Priority,

Identifiers - access credentials to resources,

Quotas (allowed usage quantity of individual resources),

Runtime,

Opened files, or

Assigned devices.

→

⟶

Operating Systems - Processes - WS 24/25 10 / 46

PROCESS TABLE AND PROCESS CONTROLPROCESS TABLE AND PROCESS CONTROL
BLOCKSBLOCKS

Each process has its own process context, which is independent of the

contexts of other processes

For managing the processes, the

operating system implements the

process table

It is a list of all existing processes.

It contains for each process a record which

is called process control block (PCB)

Operating Systems - Processes - WS 24/25 11 / 46

CONTEXT SWITCHINGCONTEXT SWITCHING

In order to switch from one process

to another, the OS stores the context

(CPU register content) of the

former one in the process control

block

The context of the latter one is

restored from the content of its

process control block

Each process is at any moment in a particular state

 Process state models

⟶

⟶

Operating Systems - Processes - WS 24/25 12 / 46

PROCESS STATE MODELS

Operating Systems - Processes - WS 24/25 13 / 46

PROCESS STATESPROCESS STATES

The number of different states depends on the process state model of the

operating system used

How many process states must a process model contain at least?

Operating Systems - Processes - WS 24/25 14 / 46

PROCESS STATE MODEL WITH 2 STATESPROCESS STATE MODEL WITH 2 STATES

In principle two process states are enough:

running: The CPU is allocated to a process

idle: The processes waits for the allocation of CPU

Source: Prof. Christian Baun

Operating Systems - Processes - WS 24/25 15 / 46

PROCESS STATE MODEL WITH 2 STATESPROCESS STATE MODEL WITH 2 STATES
(IMPLEMENTATION)(IMPLEMENTATION)

Processes in state idle are stored in a queue (the runqueue), in which they

wait for execution

The list can be sorted according to the process priority or waiting time

Source: Prof. Christian Baun

This model also shows the working method of the dispatcher

The job of the dispatcher is to carry out the state transitions

The execution order of the processes is specified by the scheduler, which

uses a scheduling algorithm

→

Operating Systems - Processes - WS 24/25 16 / 46

PROCESS PRIORITIESPROCESS PRIORITIES

The priority of a process is proportional to its CPU time

The process priority is typically expressed as an integer value

A lower value represents a higher priority

For Linux systems:

Priorities between -20 and +19 are available

-20 is the highest priority and +19 is the lowest priority.

The default priority is 0

Normal users can assign priorities from 0 to 19

The super user (root) can assign negative values too

For RIOT systems:

Priorities between 0 and 15 are available

0 is the highest priority and 15 is the lowest priority.

The default priority is 7

Priorities are typically fixed at process creation

Operating Systems - Processes - WS 24/25 17 / 46

TWO STATES DO NOT SUFFICE IN PRACTICETWO STATES DO NOT SUFFICE IN PRACTICE

The process state model with 2 states assumes that all processes are ready to

run at any time

This is unrealistic!

In almost any system processes become blocked at some point

Possible reasons:

They wait for an I/O device

They wait for the result of another process

They wait for a user input

Solution: Split the idle state into two:

ready state

blocked state

 Process state model with 3 states⟹

Operating Systems - Processes - WS 24/25 18 / 46

PROCESS STATE MODEL WITH 3 STATESPROCESS STATE MODEL WITH 3 STATES

Each process is in one of the

following states:

running:

The CPU is assigned to the

process and executes its

instructions

ready:

The process is ready to run and is currently waiting for the allocation of the CPU

This state is sometimes also called pending

blocked:

The process can currently not be executed and is waiting for the occurrence of an event or the

satisfaction of a condition

This may be e.g., a message of another process or of an I/O device or the occurrence of a

synchronization event

Operating Systems - Processes - WS 24/25 19 / 46

PROCESS STATE MODEL WITH 3 STATES – IMPLEMENTATIONPROCESS STATE MODEL WITH 3 STATES – IMPLEMENTATION

In practice, operating systems (e.g., Linux or RIOT) implement multiple queues for

processes blocked state

State transition: When a process state is changed, the corresponding entry is removed from

one queue and inserted into another one

No separate list exists for processes in running state

Operating Systems - Processes - WS 24/25 20 / 46

PROCESS STATE MODEL WITH 5 STATESPROCESS STATE MODEL WITH 5 STATES

For many implementations the introduction of two additional states is useful:

new: The process (process control block) has been created by the OS but not yet in ready

state

exit: The execution of the process has finished or was terminated but the process control

block still exists

Reason for the existence of the

process states new and exit:

The number of executable processes may

be limited in order to save memory and to

specify the degree of multitasking

Operating Systems - Processes - WS 24/25 21 / 46

PROCESS STATE MODEL WITH 6 STATESPROCESS STATE MODEL WITH 6 STATES

The sum of all processes may exceed the amount of physical main memory

memory belonging to currently not running processes is swapped out

 swapping

The OS outsources processes which are in blocked state

⇒

⟹

Operating Systems - Processes - WS 24/25 22 / 46

PROCESS STATE MODEL WITH 7 STATESPROCESS STATE MODEL WITH 7 STATES

For more efficient use of available memory or in order to reduce waiting time,

processes in suspended state may be distinguished into

blocked suspended state

ready suspended state

Operating Systems - Processes - WS 24/25 23 / 46

PROCESS STATE MODEL OF LINUX/UNIXPROCESS STATE MODEL OF LINUX/UNIX
(SOMEWHAT SIMPLIFIED)(SOMEWHAT SIMPLIFIED)

The state running is split into the states…

user running for user mode processes

kernel running for kernel mode processes

A zombie process has completed execution (via the system call exit) but its entry in the process table exists until the

parent process has fetched (via the system call wait) the exit status (return code)

Operating Systems - Processes - WS 24/25 24 / 46

RECAPRECAP

What do you already know? Let’s go to the survey again:

https://fra-uas.particifyapp.net/p/66824346

Which cache write policy yields the

best performance?
Which types of context information

does the OS store per process?

To which states are there valid

transitions from the ready state in a

Linux system?

Operating Systems - Processes - WS 24/25 25 / 46

https://fra-uas.particifyapp.net/p/66824346

CREATE AND ERASE
PROCESSES

Operating Systems - Processes - WS 24/25 26 / 46

WRITING PORTABLE CODEWRITING PORTABLE CODE

What does one need to do in order to implement an

application that can be run on a variety of computers?

Operating Systems - Processes - WS 24/25 27 / 46

POSIXPOSIX

POSIX (Portable Operating System Interface) is a family of IEEE standards for

operating systems

Aims for portability and compatibility of applications between different

operating systems

Defines user and system level APIs (application programming interfaces)

Additionally it defines command line shells and utility interfaces

It is based on UNIX

There are few POSIX-certified OS (e.g., macOS, VxWorks, or AIX)

Many OS (like Linux, FreeBSD, or Minix) are mostly POSIX compliant

Operating Systems - Processes - WS 24/25 28 / 46

POSIX PROCESS CREATION VIA POSIX PROCESS CREATION VIA forkfork

In a POSIX system the system call fork() is the only way to create a new

process

If a process calls fork(), an identical copy is started as a new process

The calling process is called parent process

The new process is called child process

Child process and parent process both have their own process context, but …

all assigned resources (like opened files and memory areas) of the parent

process are copied for the child process and are independent from the parent

process

The child process after creation runs the exactly same code

Since the program counters are identical as well both processes refer to the same line of code

Operating Systems - Processes - WS 24/25 29 / 46

CODE EXAMPLE FOR CODE EXAMPLE FOR forkfork ON LINUX ON LINUX

If a process calls fork(), an exact copy is created

The processes differ only in the return values of fork()

#include <stdio.h>1

#include <unistd.h>2

#include <stdlib.h>3

void main(void) {4

 int return_value = fork();5

 if (return_value < 0) {6

 // If fork() returns -1, an error happened.7

 // Memory or processes table have no more free capacity.8

 ...9

 }10

 if (return_value > 0) {11

 // If fork() returns a positive number, we are in the parent process.12

 // The return value is the PID of the newly created child process.13

 ...14

 }15

 if (return_value == 0) {16

 // If fork() returns 0, we are in the child process.17

 ...18

 }19

}20

Operating Systems - Processes - WS 24/25 30 / 46

file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html

PROCESS HIERARCHY OF A POSIX SYSTEMPROCESS HIERARCHY OF A POSIX SYSTEM

All processes on a POSIX system are spawned via fork()

All processes are part of the same hierarchy

But which process forms the root of this hierarchy?

init or systemd (PID 1) is the first process in Linux/UNIX

All running processes originate from init init (or systemd) = parent of all

processes

→

Operating Systems - Processes - WS 24/25 31 / 46

PROCESS TREEPROCESS TREE

Processes in a system form a tree of processes (process hierarchy) based

on the parent-child relationship

The commands pstree and ps f return an overview about the processes,

running in Linux/UNIX, as a tree according to their parent/child relationships

⟶

 $ ps fax
 1 ? Ss 0:01 /usr/lib/systemd/systemd --switched-root --system
...
1211 ? Ss 0:00 dhcpcd: [manager] [ip4] [ip6]
1214 ? S 0:00 _ dhcpcd: [privileged proxy]
7775 ? S 0:00 | _ dhcpcd: [BPF ARP] enp0s31f6 10.2.0.190
7778 ? S 0:00 | _ dhcpcd: [BPF ARP] wlan0 10.51.134.219
1215 ? S 0:00 _ dhcpcd: [network proxy]
1216 ? S 0:00 _ dhcpcd: [control proxy]
1339 ? Ss 0:00 /usr/lib/systemd/systemd --user
1340 ? S 0:00 _ (sd-pam)
1465 ? Ss 0:00 _ /usr/bin/dbus-daemon --session --nofork
1511 ? Ssl 0:00 _ /usr/lib/at-spi-bus-launcher
1519 ? S 0:00 | _ /usr/bin/dbus-daemon --address=unix:path=/run/user/1000/at-spi/bus

Operating Systems - Processes - WS 24/25 32 / 46

INFORMATION ABOUT PROCESSES IN LINUX/UNIXINFORMATION ABOUT PROCESSES IN LINUX/UNIX

C (CPU) = CPU utilization of the process in percent

SZ (Size) = virtual process size = Text segment, heap and stack (see slide)

RSS (Resident Set Size) = Occupied physical memory (without swap) in kB

PSR = CPU core assigned to the process

STIME = start time of the process

TTY (Teletypewriter) = control terminal.

Usually a virtual device: pts (pseudo terminal slave)

TIME = consumed CPU time of the process (HH:MM:SS)

$ ps -eFw
UID PID PPID C SZ RSS PSR STIME TTY TIME CMD
root 1 0 0 5456 12860 2 12:06 ? 00:00:01 /usr/lib/systemd/systemd
root 1311 1 0 1998 4992 4 12:06 ? 00:00:00 login -- oleg
oleg 1339 1 0 5110 11828 4 12:07 ? 00:00:00 /usr/lib/systemd/systemd --user
oleg 1347 1311 0 1122763 171300 0 12:07 tty1 00:00:51 sway
oleg 8031 1 0 285131 31908 3 13:16 ? 00:00:02 foot
oleg 8033 8031 0 4948 15160 7 13:16 pts/2 00:00:02 /usr/bin/zsh
oleg 14043 1 3 949647 569960 4 13:26 ? 00:01:33 /usr/lib/firefox/firefox
oleg 14077 1 0 261432 165640 2 13:26 tty1 00:00:06 Xwayland :0 -rootless -core
oleg 22367 1 0 285340 35712 3 13:54 ? 00:00:01 foot
oleg 22369 22367 0 3710 9548 2 13:54 pts/1 00:00:00 /usr/bin/zsh
root 25003 2 0 0 0 6 14:05 ? 00:00:00 [kworker/6:2-events]
root 25097 2 0 0 0 0 14:05 ? 00:00:00 [kworker/0:2-i915-unordered]
oleg 25202 22369 0 3187 4564 3 14:05 pts/1 00:00:00 ps -eFw

→

Operating Systems - Processes - WS 24/25 33 / 46

PARENT AND CHILD PROCESSESPARENT AND CHILD PROCESSES
The example demonstrates that parent and child processes operate independently of each

other and have different memory areas

The output demonstrates the switches between the processes

The value of the loop variable i proves that parent and child processes are independent of

each other

#include <stdio.h>1

#include <unistd.h>2

#include <stdlib.h>3

int main(void) {4

 int i;5

 if (fork())6

 // Parent process source code7

 for (i = 0; i < 5000000; i++)8

 printf("\n Parent: \%i", i);9

 else10

 // Child process source code11

 for (i = 0; i < 5000000; i++)12

 printf("\n Child : \%i", i);13

 return 0;14

}15

Child : 0
Child : 1
...
Child : 21019
Parent: 0
...
Parent: 50148
Child : 21020
...
Child : 129645
Parent: 50149
...
Parent: 855006
Child : 129646
...

The result of execution can not be reproduced!

Operating Systems - Processes - WS 24/25 34 / 46

file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html

THE PID NUMBERS OF PARENT AND CHILDTHE PID NUMBERS OF PARENT AND CHILD
PROCESS (1/2)PROCESS (1/2)

This example creates

a child process

Child process and

parent process both

print:

Own PID

PID of parent process

(PPID)

#include <stdio.h>1

#include <unistd.h>2

#include <stdlib.h>3

void main(void) {4

 int pid_of_child;5

 pid_of_child = fork();6

 // An error occured --> program abort7

 if (pid_of_child < 0) {8

 perror("\n fork() caused an error!");9

 exit(1);10

 }11

 // Parent process12

 if (pid_of_child > 0) {13

 printf("\n Parent: PID: %i", getpid());14

 printf("\n Parent: PPID: %i", getppid());15

 }16

 // Child process17

 if (pid_of_child == 0) {18

 printf("\n Child: PID: %i", getpid());19

 printf("\n Child: PPID: %i", getppid());20

 }21

} 22

Operating Systems - Processes - WS 24/25 35 / 46

file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html

THE PID NUMBERS OF PARENT AND CHILDTHE PID NUMBERS OF PARENT AND CHILD
PROCESS (2/2)PROCESS (2/2)

The output is usually similar to this one:

Parent: PID: 20835

Parent: PPID: 3904

Child: PID: 20836

Child: PPID: 20835

This result can be observed sometimes:

Parent: PID: 20837

Parent: PPID: 3904

Child: PID: 20838

Child: PPID: 1

The parent process was terminated before the child process

If a parent process terminates before the child process, it gets init as the new parent

process assigned

Orphaned processes are always adopted by init

Operating Systems - Processes - WS 24/25 36 / 46

REPLACING PROCESSES VIA REPLACING PROCESSES VIA execexec

The system call exec() replaces a process with another one

The new process gets the PID of the calling process

To start a new process, one need to …

call fork(), and then

call exec()

If no new process is created with fork() before exec() is called, the parent process is

replaced

Steps of a program execution from a shell:

The shell creates with fork() an identical copy of itself

In the new process, the actual program is stared with exec()

Source: Prof. Christian Baun

Operating Systems - Processes - WS 24/25 37 / 46

EXEC EXAMPLEEXEC EXAMPLE

Because of the exec, the ps -f command replaced the bash and

got its PID (12751) and PPID (1772)

$ ps -f
UID PID PPID C STIME TTY TIME CMD
user 1772 1727 0 May18 pts/2 00:00:00 bash
user 12750 1772 0 11:26 pts/2 00:00:00 ps -f
$ bash
$ ps -f
UID PID PPID C STIME TTY TIME CMD
user 1772 1727 0 May18 pts/2 00:00:00 bash
user 12751 1772 12 11:26 pts/2 00:00:00 bash
user 12769 12751 0 11:26 pts/2 00:00:00 ps -f
$ exec ps -f
UID PID PPID C STIME TTY TIME CMD
user 1772 1727 0 May18 pts/2 00:00:00 bash
user 12751 1772 4 11:26 pts/2 00:00:00 ps -f
$ ps -f
UID PID PPID C STIME TTY TIME CMD
user 1772 1727 0 May18 pts/2 00:00:00 bash
user 12770 1772 0 11:27 pts/2 00:00:00 ps -f

Operating Systems - Processes - WS 24/25 38 / 46

ANOTHER ANOTHER execexec EXAMPLE EXAMPLE

The system call

exec() does not

exist as wrapper

function

But multiple variants

of the exec()

function exist

One of these variants

is execl()

Helpful overview about the different variants of the exec() function:

#include <stdio.h>1

#include <unistd.h>2

int main(void) {3

 int pid; 4

 pid = fork();5

 // If PID!=0 --> Parent process6

 if (pid) {7

 printf("...Parent process...\n");8

 printf("[Parent] Own PID: %d\n", getpid());9

 printf("[Parent] PID of the child: %d\n", pid);10

 }11

 // If PID=0 --> Child process12

 else {13

 printf("...Child process...\n");14

 printf("[Child] Own PID: %d\n", getpid());15

 printf("[Child] PID of the parent: %d\n", getppid());16

 // Current program is replaced by "date"17

 // "date" will be the process name in the process table18

 execl("/bin/date", "date", "-u", NULL);19

 }20

 printf("[%d]Program abort\n", getpid());21

 return 0;22

} 23

http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html

Operating Systems - Processes - WS 24/25 39 / 46

file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html

EXPLANATION OF THE EXPLANATION OF THE execexec EXAMPLE EXAMPLE

After printing its PID via getpid() and the PID of its parent process via

getppid(), the child process is replaced via date

If the parent process of a process terminates before the child process, the

child process gets init as new parent process assigned :::

Since Linux Kernel 3.4 (2012) and Dragonfly BSD 4.2 (2015), it is also possible that other processes than PID=1 become the new parent process of an orphaned

process

$./exec_example
...Parent process...
[Parent] Own PID: 25646
[Parent] PID of the child: 25647
[25646]Program abort
...Child process...
[Child] Own PID: 25647
[Child] PID of the parent: 25646
Di 24. Mai 17:25:31 CEST 2016
$./exec_example
...Parent process...
[Parent] Own PID: 25660
[Parent] PID of the child: 25661
[25660]Program abort
...Child process...
[Child] Own PID: 25661
[Child] PID of the parent: 1
Di 24. Mai 17:26:12 CEST 2016

http://unix.stackexchange.com/questions/149319/new-parent-process-when-the-parent-process-dies/177361#177361

Operating Systems - Processes - WS 24/25 40 / 46

http://unix.stackexchange.com/questions/149319/new-parent-process-when-the-parent-process-dies/177361#177361

3 POSSIBLE WAYS TO CREATE A NEW PROCESS3 POSSIBLE WAYS TO CREATE A NEW PROCESS

Process forking: A running process creates with fork() a new, identical

process

Process chaining: A running process creates with exec() a new process and

terminates itself this way because it gets replaced by the new process

Process creation: A running process creates with fork() a new, identical

process, which replaces itself via exec() by a new process

image

Operating Systems - Processes - WS 24/25 41 / 46

HAVE FUN WITH FORK BOMBSHAVE FUN WITH FORK BOMBS

Python code C code PHP code

A fork bomb is a program, which calls the fork() system call in an infinite

loop

Objective: Create copies of the process until there is no more free memory

The system becomes unusable

Only protection option: Limit the maximum number of processes and the

maximum memory usage per user

import os1

2

while True:3

 os.fork() 4

#include <unistd.h>1

2

int main(void)3

{4

 while(1)5

 fork();6

} 7

<?php1

 while(true)2

 pcntl_fork();3

?> 4

Operating Systems - Processes - WS 24/25 42 / 46

file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-05.html

STRUCTURE OF A UNIX
PROCESS IN MEMORY

Operating Systems - Processes - WS 24/25 43 / 46

PROCESS’ DATAPROCESS’ DATA

What types of data are being accessed by a process?

Operating Systems - Processes - WS 24/25 44 / 46

MEMORY LAYOUT OF A UNIX PROCESSMEMORY LAYOUT OF A UNIX PROCESS

Sources UNIX-Systemprogrammierung, Helmut Herold, Addison-Wesley

(1996), P.345-347

Betriebssysteme, Carsten Vogt, Spektrum (2001), P.58-60

Moderne Betriebssysteme, Andrew S. Tanenbaum, Pearson (2009), P.874-877

The command size returns the size

(in bytes) of the text segment, data

segment, and BSS of program files

The contents of the text segment and data

segment are included in the program files

All contents in the BSS are set to value 0

at process creation

$ size /bin/c*
text data bss dec hex filename
46480 620 1480 48580 bdc4 /bin/cat
7619 420 32 8071 1f87 /bin/chacl
55211 592 464 56267 dbcb /bin/chgrp
51614 568 464 52646 cda6 /bin/chmod
57349 600 464 58413 e42d /bin/chown
120319 868 2696 123883 1e3eb /bin/cp
131911 2672 1736 136319 2147f /bin/cpio

Operating Systems - Processes - WS 24/25 45 / 46

SUMMARYSUMMARY
You should now be able to answer the following

questions:

What is a process?

Which information does the hardware and the system

context provide?

What happens when the OS switches from one

process to another?

Which states can a process have?

How can a new process be started?

How can a user mode process execute a higher

privileged task?

Operating Systems - Processes - WS 24/25 46 / 46

