
OPERATING SYSTEMS
Interrupts

Prof. Dr. Oliver Hahm

2024-12-05

Operating Systems - Interrupts - WS 24/25

AGENDAAGENDA

Interrupts, Exceptions, Traps

Interrupt Handling

Operating Systems - Interrupts - WS 24/25 2 / 28

SOME ANALOGIESSOME ANALOGIES

You are expecting a visitor –
how do you know when to open the door?

You are moderating a discussion –
how do you make sure that everyone has time to
speak?

I am giving an online presentation but forget to share
my screen –
what can you do?

Operating Systems - Interrupts - WS 24/25 3 / 28

INTERRUPTS ARE ESSENTIALINTERRUPTS ARE ESSENTIAL

An interrupt interrupts normal

program execution for a certain

purpose

In practice no computer system can

work without interrupts

Without interrupts, preemptive

multitasking is impossible

Preemptive multitasking means: The

operating system can remove the CPU from

a process before its execution is complete

Operating Systems - Interrupts - WS 24/25 4 / 28

INTERRUPTS VS. POLLINGINTERRUPTS VS. POLLING

Polling: In order to detect the

occurrence of an event a

process has continuously to

send requests

Interrupt: On occurrence of an

event an interrupt is generated

Operating Systems - Interrupts - WS 24/25 5 / 28

INTERRUPTS FROM AN APPLICATIONINTERRUPTS FROM AN APPLICATION

PERSPECTIVEPERSPECTIVE

“Interrupts are an unpleasant fact of life; although they

cannot be avoided, they should be hidden away, deep in

the bowels of the operating system, so that as little of

the operating system as possible knows about them.”

(Andrew S. Tanenbaum)

Operating Systems - Interrupts - WS 24/25 6 / 28

INTERRUPTS,

EXCEPTIONS, TRAPS

Operating Systems - Interrupts - WS 24/25 7 / 28

What reasons (sources) for an interrupt can you

imagine?

Operating Systems - Interrupts - WS 24/25 8 / 28

TERMINOLOGYTERMINOLOGY

Caution!

The terms interrupt, exception, or trap are used and

de�ned slightly di�erently in the literature or

documentation of the hardware manufacturers.

Operating Systems - Interrupts - WS 24/25 9 / 28

INTERRUPTS AND EXCEPTIONSINTERRUPTS AND EXCEPTIONS

In any computer system unpredictable events may (and will) occur at any time

and must be handled

Events that must be handled immediately are called interrupts

Interrupts can be categorized into:

Hardware or External Interrupts

An I/O device provides feedback to a process

Asynchronous interrupt

Exceptions

Faults

Error situation (error caused by an arithmetic operation)

Division by zero, �oating point error, address errors, …

Trap or Software Interrupt

Triggered by a process synchronous interrupt

Examples are the exception 0x80 to switch from user mode to kernel mode and the single-stepping mode during

program test (debugging, trace)

⇒

Operating Systems - Interrupts - WS 24/25 10 / 28

INTERRUPT EXAMPLEINTERRUPT EXAMPLE

X and Y are processes which communicate via a

network

Both processes are executed on di�erent computers within a

certain period of time

If the other process does not reply within that time the message

must be sent again (timeout)

Reason: The sender assumes that the message got lost

→

How could we implement this timeout for process X?

Operating Systems - Interrupts - WS 24/25 11 / 28

BLOCKING IMPLEMENTATIONBLOCKING IMPLEMENTATION

Process X gets blocked until

the message is acknowledged

or the timeout expires

If the acknowledgement

arrives, sender process X may

continue

Otherwise, process X must send the

message again

Disadvantage: Long idle times

for process X arise

Operating Systems - Interrupts - WS 24/25 12 / 28

NON-BLOCKING IMPLEMENTATIONNON-BLOCKING IMPLEMENTATION

After process X sent the message it

continues to operate normally

If a timeout expires because of a missing

acknowledgment the OS suspends the

process

The context of the process is

saved and a procedure for interrupt

handling is called

In the example the procedure would send

the message again

If the execution of the procedure has

�nished the process becomes reactivated

Subprograms without return value are typically called procedures. Subprograms

with return value are called functions or methods.

→

Operating Systems - Interrupts - WS 24/25 13 / 28

HARDWARE INTERRUPTSHARDWARE INTERRUPTS

Asynchronous

A device signals an event

Potential sources:

External devices like a keyboard (event keypress)

Internal devices like a clock (event timer tick)

Noti�cations of another processor

The OS maintains a list of interrupt vectors (IV)

Each IV maps an interrupt source to the according handler

The entire list is called interrupt vector table (IVT)

→

→

Operating Systems - Interrupts - WS 24/25 14 / 28

EXCEPTIONSEXCEPTIONS

Exceptions are caused by a running process

When an exception occurs the CPU is interrupted and an handler in the kernel

is activated

A serious error has occurred, e.g.,:

Division by zero

Floating point operation without a FPU (�oating point unit)

Invalid instruction

Segmentation fault (memory access violation)

Hardware failure

Exceptions can be used to generate an interrupt in software

 trap

Synchronous interrupt

→

Operating Systems - Interrupts - WS 24/25 15 / 28

TRAPSTRAPS

Software instruction which causes an (intended) change of operation mode

 System calls

processor synchronous

⟶

Operating Systems - Interrupts - WS 24/25 16 / 28

HOW IS AN INTERRUPT GENERATED?HOW IS AN INTERRUPT GENERATED?

An interrupt source generates an Interrupt Request (IRQ)

IRQs are received by a Programmable Interrupt Controller (PIC) (for ARM

CPUs Vectored Interrupt Controller (VIC))

This controller determines the maximum number of di�erent IRQs

Shared IRQs are possible

It also manages and prioritizes the interrupts

Intel
8259

GND

CAS 1

CAS 0

D0

D1

D2

D3

D4

D5

D6

D7

-RD

-WR

-CS VCC

A0

-INTA

IR7

IR6

IR5

IR4

IR3

IR2

IR1

IR0

INT

-SP/-EN

CAS 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

Created by Rahmat Hidayat
from the Noun Project

CPU
Interrupt

IRQ

IRQ

IRQ

Operating Systems - Interrupts - WS 24/25 17 / 28

INTERRUPT CONFLICTSINTERRUPT CONFLICTS

Two potential issues during interrupt handling:

During interrupt handling, further interrupts occur

Multiple interrupts occur at the same time

Operating Systems - Interrupts - WS 24/25 18 / 28

SEQUENTIAL INTERRUPT PROCESSINGSEQUENTIAL INTERRUPT PROCESSING

Interrupts are strictly processed one

after the other

Interrupts are never interrupted

Advantage: Simpler software design

Drawback: Priorities and time-critical

reactions are ignored

Operating Systems - Interrupts - WS 24/25 19 / 28

NESTED INTERRUPT PROCESSINGNESTED INTERRUPT PROCESSING

Priorities are speci�ed for the

interrupts

Interrupt handlers can be

interrupted, when an interrupt with

higher priority occurs

Interrupts with lower priority are

delayed until all interrupts with a

higher priority are handled

Drawback: Interrupts with a low

priority may be signi�cantly delayed

The real-time operating systems QNX Neutrino and Windows CE 5.0 both support

nested interrupts

http://www.qnx.com/developers/docs/660/topic/com.qnx.doc.neutrino.sys_arch/topic/kernel_Nested_interrupts.html

http://msdn.microsoft.com/de-de/library/ms892539.aspx

Operating Systems - Interrupts - WS 24/25 20 / 28

INTERRUPT HANDLING

Operating Systems - Interrupts - WS 24/25 21 / 28

INTERRUPT HANDLINGINTERRUPT HANDLING

An interrupt request (IRQ) indicates an

event and the operating system

provides an event handler, the so

called interrupt service routine (ISR)

The CPU is interrupted and for interrupt handling, the ISR of the kernel is

called

The value of the program counter register is set to the address of the ISR which is executed

next

The operating system stores the process context and restores the process context after the

execution of the ISR has �nished

Operating Systems - Interrupts - WS 24/25 22 / 28

INTERRUPT HANDLING PROCEDUREINTERRUPT HANDLING PROCEDURE

The common

pattern is:

Save the state

Prepare ISR execution

Select the correct ISR

ISR execution

Potentially restore the

state

1
2

3

4

5

6

8

Instruction 1

Instruction 2

Save 1

Save n

Instruction a

Instruction n

Restore 1

Restore n

Instruction 3

Instruction 4

Event

CPU Interrupt
Controller

Instruction 0

7

Operating Systems - Interrupts - WS 24/25 23 / 28

ISR PROPERTIESISR PROPERTIES

Short runtime

No blocking operations

Low memory footprint

thread-safe

Operating Systems - Interrupts - WS 24/25 24 / 28

DELAYED INTERRUPT HANDLINGDELAYED INTERRUPT HANDLING

Only the most necessary is done in the ISR itself

All more expensive operations are postponed (outside the interrupt context)

On MS Windows this is called Deferred Procedure Call (DPC)

Example: character transmission

Assume that characters are received on a certain line

The application program proesses entire lines

The ISR must save the characters

The application program should be notified only when the first linebreak has

been detected

Operating Systems - Interrupts - WS 24/25 25 / 28

INTERRUPT DESIRED?INTERRUPT DESIRED?

Most interrupts can be deactivated

(masked)

Critical interrupts (e.g., exceptions)

are not maskable (non-maskable

interrupt (NMI))

Masking an interrupt may be

necessary to allow for concurrency

→

Operating Systems - Interrupts - WS 24/25 26 / 28

PROBLEMS OF INTERRUPT HANDLINGPROBLEMS OF INTERRUPT HANDLING

Concurrency

Time criticality

Hard to debug

Nesting is possible (priorities)

Compiler optimizations (volatile)

Non-reentrant functions

→

Operating Systems - Interrupts - WS 24/25 27 / 28

SUMMARYSUMMARY
You should now be able to answer the following

questions:

Why does any computer system need interrupts?

What is the di�erence between hardware interrupts,

exceptions, and traps?

How are interrupts handled?

Operating Systems - Interrupts - WS 24/25 28 / 28

