
OPERATING SYSTEMS
Scheduling

Prof. Dr. Oliver Hahm

2024-12-12

Operating Systems - Scheduling - WS 24/25

AGENDAAGENDA

Process Switching
Dispatcher

Scheduling

Scheduling Policies (Algorithms)

Operating Systems - Scheduling - WS 24/25 2 / 54

What does the OS need to implement in order to enable

multitasking?

Operating Systems - Scheduling - WS 24/25 3 / 54

PROCESS SWITCHING

Operating Systems - Scheduling - WS 24/25 4 / 54

DISPATCHERDISPATCHER

Operating Systems - Scheduling - WS 24/25 5 / 54

DISPATCHING AND SCHEDULINGDISPATCHING AND SCHEDULING

Tasks of multitasking OS are among others:

Dispatching: Assign the CPU to another process (process

switching)

Scheduling: Determine the order of process execution and the

exact point in time when the process switch occurs

The dispatcher carries out the state transitions of the

processes

The scheduler determines these transitions happen

Operating Systems - Scheduling - WS 24/25 6 / 54

PERFORMANCE CONSIDERATIONSPERFORMANCE CONSIDERATIONS

The scheduler may run …

periodically (e.g., on Linux)

for every interrupt (e.g., on RIOT)

Is called frequently and hence, should be as e�cient

as possible

Every call to the scheduler may trigger the

dispatcher to run

Must be e�cient as well

Operating Systems - Scheduling - WS 24/25 7 / 54

What does the dispatcher have to do?

Operating Systems - Scheduling - WS 24/25 8 / 54

THE DISPATCHERTHE DISPATCHER
We already know…

During process switching, the dispatcher removes the CPU from the running process and assigns it to the process, which is

the first one in the queue

For transitions between the states ready and blocked, the dispatcher removes the corresponding process control blocks from

the status lists and accordingly inserts them new

Transitions from or to the state running always imply a switch of the process, which is currently executed by the CPU

If a process switches into the state running or from the state running to another

state, the dispatcher needs to…

store the context (register contents) of the executed process in the process

control block (PCB)

assign the CPU to another process

restore the context (register contents) of the process, which will be executed

next, from its process control block (PCB)

Operating Systems - Scheduling - WS 24/25 9 / 54

Which process is executed if no process is on the

runqueue?

Operating Systems - Scheduling - WS 24/25 10 / 54

IDLE PROCESSIDLE PROCESS

Many OS have a idle process

If no process is in the state ready an

idle process gets the CPU assigned

The idle process is always ready to

run and has the lowest priority

Many modern CPU provide power-

saving modes most OS will enter a

power-saving mode when the idle

process is running

For each CPU core (in hyperthreading

systems for each logical CPU) a

system idle process exists

→

Operating Systems - Scheduling - WS 24/25 11 / 54

SCHEDULINGSCHEDULING

Operating Systems - Scheduling - WS 24/25 12 / 54

SCHEDULING CRITERIA AND SCHEDULINGSCHEDULING CRITERIA AND SCHEDULING
POLICIESPOLICIES

The scheduler of an OS speci�es the order in which the dispatcher puts the

processes in the state ready

The best scheduling policy (or scheduling algorithm) depends on the use case

No scheduling policy…

is optimally suited for every system and

can take all scheduling criteria optimal into account.

The scheduling policy is always a tradeo� between di�erent scheduling

criteria

Scheduling criteria

Scheduling criteria are among others CPU load, response time (latency),

turnaround time, throughput, efficiency, real-time behavior (compliance with

deadlines), waiting time, overhead, fairness, consideration of priorities, even

resource utilization

Operating Systems - Scheduling - WS 24/25 13 / 54

When to interrupt a running process?

Operating Systems - Scheduling - WS 24/25 14 / 54

NON-PREEMPTIVE AND PREEMPTIVENON-PREEMPTIVE AND PREEMPTIVE
SCHEDULINGSCHEDULING

Two types of scheduling policies exist

Non-preemptive scheduling or cooperative scheduling

Any running process will either run until completion or voluntarily yields

Problematic: A process may occupy the CPU for as long as it wants

Examples: Windows 3.x, MacOS 8/9, Windows 95/98/Me (for 16-Bit processes)

Preemptive scheduling

The CPU may be removed from a process before its execution is completed

Drawback: Higher overhead compared with non-preemptive scheduling

Examples: Linux, MacOS X, Windows 95/98/Me (for 32-Bit processes), Windows NT

(incl. XP/Visa/7/8/10/11), FreeBSD, RIOT

Preemptive Scheduling in RIOT

In RIOT a running process is only removed from the run queue if a process with a

higher priority becomes ready to run.

Operating Systems - Scheduling - WS 24/25 15 / 54

How can we measure

the performance of a

scheduling policy?

Operating Systems - Scheduling - WS 24/25 16 / 54

PERFORMANCE METRICSPERFORMANCE METRICS

Waiting Time

The time a process has to wait before getting the

CPU assigned

CPU Time

The time that the process needs to access the CPU

to complete its execution

Runtime

= "lifetime" = time period between the creation and

the termination of a process = (CPU time + waiting

time)

Operating Systems - Scheduling - WS 24/25 17 / 54

IMPACT ON THE OVERALL PERFORMANCE OF AIMPACT ON THE OVERALL PERFORMANCE OF A
COMPUTERCOMPUTER

This example demonstrates the impact of the scheduling method used on the

overall performance of a computer

The processes and are to be executed one after the other

Process CPU time

A ms

B ms

PA PB

24

2

If a short-running process runs before a long-running process,

the runtime and waiting time of the long process process get

slightly worse

If a long-running process runs before a short-running process,

the runtime and waiting time of the short process get

signi�cantly worse

Execution Runtime Average Waiting time Average

order A B runtime A B waiting time

24 ms 26 ms ms 0 ms 24 ms ms

26 ms 2 ms ms 2 ms 0 ms ms

,PA PB = 25
24+26

2
= 12

0+24

2

,PB PA = 14
2+26

2
= 1

0+2

2

Operating Systems - Scheduling - WS 24/25 18 / 54

SCHEDULE REPRESENTATIONSCHEDULE REPRESENTATION

The execution order of processes according to a

certain scheduling strategy can be represented as a

Gantt Chart

A Gantt chart is a type of bar chart which can be used

to illustrate a schedule

Gantt charts were designed by the engineer and

consultant Henry Gantt

Operating Systems - Scheduling - WS 24/25 19 / 54

SCHEDULING POLICIES
(ALGORITHMS)

Operating Systems - Scheduling - WS 24/25 20 / 54

SCHEDULING POLICIESSCHEDULING POLICIES

Several scheduling policies exist

Each policy tries to comply with the well-known scheduling criteria and principles in varying

degrees

Some scheduling policies:

Priority-driven scheduling

First Come First Served (FCFS) = First In First Out (FIFO)

Last Come First Served (LCFS)

Round Robin (RR) with time quantum

Shortest/Longest Job First (SJF/LJF)

Shortest/Longest Remaining Time First (SRTF/LRTF)

Highest Response Ratio Next (HRRN)

Earliest Deadline First (EDF)

Static multilevel scheduling

Multilevel feedback scheduling

Completely Fair Scheduler (CFS)

Operating Systems - Scheduling - WS 24/25 21 / 54

PRIORITY-DRIVEN SCHEDULINGPRIORITY-DRIVEN SCHEDULING

Processes are executed according to their priority (= importance or urgency)

The highest priority process in state ready gets the CPU assigned

Can be preemptive and non-preemptive

The priority values can be assigned static or dynamic

Static priorities remain unchanged throughout the lifetime of a process and are often used in

real-time systems

Dynamic priorities are adjusted during a process’ lifetime

 Multilevel feedback scheduling (see slide)

Risk of (static) priority-driven scheduling: Processes with low priority values

may starve (this is not fair)

⟹

⟹

Operating Systems - Scheduling - WS 24/25 22 / 54

PRIORITY-DRIVEN SCHEDULINGPRIORITY-DRIVEN SCHEDULING

Source: William Stallings. Operating Systems. 4th edition. Prentice Hall (2001). P.401

Operating Systems - Scheduling - WS 24/25 23 / 54

PRIORITY-DRIVEN SCHEDULING – EXAMPLEPRIORITY-DRIVEN SCHEDULING – EXAMPLE

Four processes shall be processed on

a system with a single CPU

All processes are at time point 0 in

state ready

Execution order of the processes as

Gantt chart (timeline)

Process CPU time Priority

A 8 ms 15

B 4 ms 3

C 7 ms 4

D 13 ms 8

Runtime of the processes

Process A B C D

Runtime 32 4 11 24

Avg. runtime = = 17.75 ms
32+4+11+24

4

Waiting time of the processes

Process A B C D

Waiting time 24 0 4 11

Avg. waiting time = = 9.75 ms
24+0+4+11

4

Operating Systems - Scheduling - WS 24/25 24 / 54

FIRST COME FIRST SERVED (FCFS)FIRST COME FIRST SERVED (FCFS)

Works according to the principle First In First Out (FIFO)

Running processes are not interrupted

It is non-preemptive scheduling

FCFS is fair

All processes are eventually executed

The average waiting time may be very high under certain circumstances

The execution of short-lived processes may have to wait for a long time if processes with long

execution times have arrived before

FCFS/FIFO can be used for batch processing

FIFO is used in Linux for non-preemptive real-time processes

⟹

Operating Systems - Scheduling - WS 24/25 25 / 54

FIRST COME FIRST SERVED – EXAMPLEFIRST COME FIRST SERVED – EXAMPLE

Four processes shall be processed on

a system with a single CPU

Execution order of the processes as

Gantt chart

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 1 ms

C 7 ms 3 ms

D 13 ms 5 ms

Runtime of the processes

Process A B C D

Runtime 8 11 16 27

Avg. runtime =

Waiting time of the processes

Process A B C D

Waiting time 0 7 9 14

Avg. waiting time = = 15.5 ms
8+11+16+27

4
= 7.5 ms

0+7+9+14

4

Operating Systems - Scheduling - WS 24/25 26 / 54

LAST COME FIRST SERVED (LCFS)LAST COME FIRST SERVED (LCFS)

Works according to the principle Last In First Out (LIFO)

Processes are executed in the reverse order of creation

The concept is equal with a stack

Running processes are not interrupted

The processes have the CPU assigned until process termination or voluntary resigning

LCFS is not fair

In case of continuous creation of new processes, the old processes are not taken into account

and thus may starve

LCFS can be used for batch processing

Is seldom used in pure form

⟹

Operating Systems - Scheduling - WS 24/25 27 / 54

LAST COME FIRST SERVED – EXAMPLELAST COME FIRST SERVED – EXAMPLE

Four processes shall be processed on

a system with a single CPU

Execution order of the processes as

Gantt chart

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 1 ms

C 7 ms 3 ms

D 13 ms 5 ms

Runtime of the processes

Process A B C D

Runtime 8 31 25 16

Waiting time of the processes

Process A B C D

Waiting time 0 27 18 3

= 20 ms
8+31+25+16

4
= 12 ms

0+27+18+3

4

Operating Systems - Scheduling - WS 24/25 28 / 54

LAST COME FIRST SERVED – PREEMPTIVELAST COME FIRST SERVED – PREEMPTIVE
VARIANT (LCFS-PR)VARIANT (LCFS-PR)

A new process in state ready replaces the currently executed processes from

the CPU

Preempted processes are enqueued at the end

If no new processes are created, the running process has the CPU assigned until process

termination or voluntary resigning

Prefers processes with a short execution time

The execution of a process with a short execution time may be completed before new process

are created

Processes with a long execution time may get the CPU resigned several times and thus

signi�cantly delayed

LCFS-PR is not fair

Processes with a long execution time may never get the CPU assigned and starve

Is seldom used in pure form

Operating Systems - Scheduling - WS 24/25 29 / 54

LAST COME FIRST SERVED EXAMPLE –LAST COME FIRST SERVED EXAMPLE –
PREEMPTIVE VARIANTPREEMPTIVE VARIANT

Four processes shall be processed on

a system with a single CPU

Execution order of the processes as

Gantt chart

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 1 ms

C 7 ms 3 ms

D 13 ms 5 ms

Runtime of the processes

Process A B C D

Runtime 32 24 20 13

Waiting time of the processes

Process A B C D

Waiting time 24 20 13 0

= 22.25 ms
32+24+20+13

4
= 14.25 ms

24+20+13+0

4

Operating Systems - Scheduling - WS 24/25 30 / 54

Which scheduling strategy may be well suited for

generic user space applications?

Operating Systems - Scheduling - WS 24/25 31 / 54

ROUND ROBIN – RR (1/2)ROUND ROBIN – RR (1/2)

Time slices with a �xed duration (may be !) are

speci�ed

The processes are queued in a cyclic queue according

to the FIFO principle

The �rst process of the queue gets the CPU assigned for the

duration of a time slice

After the expiration of the time slice, the process gets the CPU

resigned (is preempted) and is enqueued at the end of the

queue

Whenever a process is completed successfully, it is removed

from the queue

New processes are inserted at the end of the queue

The CPU time is distributed fair among the processes

RR with time slice size behaves like FCFS

∞

⇒

∞ ⟶

Operating Systems - Scheduling - WS 24/25 32 / 54

ROUND ROBIN – RR (2/2)ROUND ROBIN – RR (2/2)

The longer the execution time of a process is, the more rounds are required

for its complete execution

The duration of the time slices in�uences the performance of the system

The shorter they are, the more process switches must take place

 increased overhead

The longer they are, the more gets the simultaneousness lost

 The system hangs/becomes jerky

The usual duration of time slices is in single or double-digit millisecond range

Prefers processes with short execution time

Preemptive scheduling policy

Round Robin scheduling can be used for interactive systems

Round Robin is used in Linux for preemptive real-time processes

⟹

⟹

Operating Systems - Scheduling - WS 24/25 33 / 54

ROUND ROBIN – EXAMPLEROUND ROBIN – EXAMPLE

Four processes shall be processed on

a system with a single CPU

All processes are at time point 0 in

state ready

Time quantum ms

Execution order of the processes as

Gantt chart

Process CPU time

A 8 ms

B 4 ms

C 7 ms

D 13 ms

Runtime of the processes

Process A B C D

Runtime 26 14 24 32

Avg. runtime =

Waiting time of the processes

Process A B C D

Waiting time 18 10 17 19

Avg. waiting time =

q = 1

= 24 ms
26+14+24+32

4
= 16 ms

18+10+17+19

4

Operating Systems - Scheduling - WS 24/25 34 / 54

SHORTEST JOB FIRST (SJF) / SHORTESTSHORTEST JOB FIRST (SJF) / SHORTEST
PROCESS NEXT (SPN)PROCESS NEXT (SPN)

The process with the shortest execution time get the CPU assigned �rst

Non-preemptive scheduling policy

Problem: The runtime of each process needs to be known in advance

Solution: Execution time is estimated by analyzing its behavior in the past

SJF is not fair

Prefers processes, which have a short execution time

Processes with a long execution time may get the CPU assigned only after a very long waiting

period or starve

If the execution time of the processes can be estimated, SJF can be used for

batch processing

Operating Systems - Scheduling - WS 24/25 35 / 54

SHORTEST JOB FIRST – EXAMPLESHORTEST JOB FIRST – EXAMPLE

Four processes shall be processed on

a system with a single CPU

All processes are at time point 0 in

state ready

Execution order of the processes as

Gantt chart

Process CPU time

A 8 ms

B 4 ms

C 7 ms

D 13 ms

Runtime of the processes

Process A B C D

Runtime 19 4 11 32

Waiting time of the processes

Process A B C D

Waiting time 11 0 4 19

= 16.5 ms
19+4+11+32

4
= 8.5 ms

11+0+4+19

4

Operating Systems - Scheduling - WS 24/25 36 / 54

SHORTEST REMAINING TIME FIRST (SRTF)SHORTEST REMAINING TIME FIRST (SRTF)

Preemptive SJF is called Shortest Remaining Time First (SRTF)

On process creation the remaining execution time of the running process is

compared with each process in state ready in the queue

If the currently running process has the shortest remaining execution time, the CPU remains

assigned to this process

If one or more processes in state ready have a shorter remaining execution time, the process

with the shortest remaining execution time gets the CPU assigned

Estimation of runtime is required

As long as no new process is created, no running process gets interrupted

The processes in state ready are compared with the running process only when a new process

is created!

Processes with a long execution time may starve (not fair)⟹

Operating Systems - Scheduling - WS 24/25 37 / 54

SHORTEST REMAINING TIME FIRST – EXAMPLESHORTEST REMAINING TIME FIRST – EXAMPLE

Four processes shall be processed on

a system with a single CPU

Execution order of the processes as

Gantt chart

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 3 ms

C 7 ms 16 ms

D 13 ms 11 ms

Runtime of the processes

Process A B C D

Runtime 12 4 7 21

Waiting time of the processes

Process A B C D

Waiting time 4 0 0 8

= 11 ms
12+4+7+21

4
= 3 ms

4+0+0+8

4

Operating Systems - Scheduling - WS 24/25 38 / 54

LONGEST JOB FIRST (LJF)LONGEST JOB FIRST (LJF)

The process with the longest execution time get the CPU assigned �rst

Non-preemptive scheduling policy

Estimation of runtime is required

LJF is not fair

Prefers processes, which have a long execution time

Processes with a short execution time may get the CPU assigned only after a very long waiting

period or starve

If the execution time of the processes can be estimated, LJF can be used for

batch processing

Operating Systems - Scheduling - WS 24/25 39 / 54

LONGEST JOB FIRST – EXAMPLELONGEST JOB FIRST – EXAMPLE

Four processes shall be processed on

a system with a single CPU

All processes are at time point 0 in

state ready

Execution order of the processes as

Gantt chart

Process CPU time

A 8 ms

B 4 ms

C 7 ms

D 13 ms

Runtime of the processes

Process A B C D

Runtime 21 32 28 13

Waiting time of the processes

Process A B C D

Waiting time 13 28 21 0

= 23.5 ms
21+32+28+13

4
= 15.5 ms

13+28+21+0

4

Operating Systems - Scheduling - WS 24/25 40 / 54

LONGEST REMAINING TIME FIRST (LRTF)LONGEST REMAINING TIME FIRST (LRTF)

Preemptive LJF is called Longest Remaining Time First (LRTF)

If a new process is created, the remaining execution time of the running

process is compared with each process in state ready in the queue

If the currently running process has the longest remaining execution time, the CPU remains

assigned to this process

If one or more processes in state ready have a longer remaining execution time, the process

with the longest remaining execution time gets the CPU assigned

Estimation of runtime is required

As long as no new process is created, no running process gets interrupted

The processes in state ready are compared with the running process only when a new process

is created!

Processes with a short duration may starve (not fair)⟹

Operating Systems - Scheduling - WS 24/25 41 / 54

LONGEST REMAINING TIME FIRST – EXAMPLELONGEST REMAINING TIME FIRST – EXAMPLE

Four processes shall be processed on

a system with a single CPU

Execution order of the processes as

Gantt chart

Process CPU time Creation time

A 8 ms 0 ms

B 4 ms 6 ms

C 7 ms 21 ms

D 13 ms 11 ms

Runtime of the processes

Process A B C D

Runtime 32 4 7 20

Waiting time of the processes

Process A B C D

Waiting time 24 0 0 7

= 15.75 ms
32+4+7+20

4
= 7.75 ms

24+0+0+7

4

Operating Systems - Scheduling - WS 24/25 42 / 54

HIGHEST RESPONSE RATIO NEXT (HRRN)HIGHEST RESPONSE RATIO NEXT (HRRN)

Fair variant of SJF/SRTF/LJF/LRTF

Takes the age of the process into account in order to avoid starvation

The response ratio is calculated for each process

Response ratio value of a process after creation: 1.0

The value rises fast for short processes

Objective: Response ratio should be as small as possible for each process

After process termination or if a process becomes blocked, the CPU is

assigned to the process with the highest response ratio

Just as with SJF/SRTF/LJF/LRTF, the execution times of the processes must be

estimated via by statistical recordings

It is impossible that processes starve HRRN is fair

Response ratio =
Estimated execution time + Waiting time

Estimated execution time

⟹

Operating Systems - Scheduling - WS 24/25 43 / 54

EARLIEST DEADLINE FIRST (EDF)EARLIEST DEADLINE FIRST (EDF)

Used in real-time operating operating systems (RTOS)

Objective: processes should comply with their deadlines when possible

Processes in ready state are arranged according to their deadline

The process with the closest deadline gets the CPU assigned next

The queue is reviewed and reorganized whenever…

a new process switches into state ready

or an active process terminates

Can be implemented as preemptive and non-preemptive scheduling

Preemptive EDF can be used in RTOS

Non-preemptive EDF can be used for batch processing

EDF is used in Linux for preemptive real-time processes

Operating Systems - Scheduling - WS 24/25 44 / 54

EARLIEST DEADLINE FIRST – EXAMPLEEARLIEST DEADLINE FIRST – EXAMPLE

Four processes shall be processed on

a system with a single CPU

All processes are at time point 0 in

state ready

Execution order of the processes as

Gantt chart

Process CPU time Deadline

A 8 ms 25

B 4 ms 18

C 7 ms 9

D 13 ms 34

Runtime of the processes

Process A B C D

Runtime 19 11 7 32

Avg. runtime =

Waiting time of the processes

Process A B C D

Waiting time 11 7 0 19

Avg. waiting time = = 17.25 ms
19+11+7+32

4
= 9.25 ms

11+7+0+19

4

Operating Systems - Scheduling - WS 24/25 45 / 54

MULTILEVEL SCHEDULINGMULTILEVEL SCHEDULING

Each scheduling policy require compromises wrt

scheduling criteria

Procedure in practice: Several scheduling strategies are

combined

 Static or dynamic multilevel scheduling⟹

Operating Systems - Scheduling - WS 24/25 46 / 54

STATIC MULTILEVEL SCHEDULINGSTATIC MULTILEVEL SCHEDULING

The list of processes of ready state is split into multiple sublists

For each sublist, a di�erent scheduling policy may be used

The sublists have di�erent priorities

or time multiplexes (e.g., 80%:20%

or 60%:30%:10%)

Makes it possible to separate time-critical

from non-time-critical processes

Example of allocating the processes to di�erent process classes (sublists) with

di�erent scheduling strategies:

Priority Process class Scheduling policy

1 Real-time processes (time-critical) Priority-driven scheduling

2 Interactive processes Round Robin

3 Compute-intensive batch processes First Come First Served

Operating Systems - Scheduling - WS 24/25 47 / 54

MULTILEVEL FEEDBACK SCHEDULING (1/2)MULTILEVEL FEEDBACK SCHEDULING (1/2)

It is impossible to predict the execution time precisely in advance

Solution: Processes, which utilized much execution time in the past, get sanctioned

Multilevel feedback scheduling works with multiple queues

Each queue has a di�erent priority or time multiplex

(e.g., 70%:15%:10%:5%)

Each new process is added to the top queue

This way it has the highest priority

Each queue uses Round Robin

If a process returns the CPU on voluntary basis, it is added to the same queue again

If a process utilized its entire time slice, it is inserted in the next lower queue, with has a lower

priority

The priorities are therefore dynamically assigned with this policy

Multilevel feedback scheduling is preemptive scheduling

Operating Systems - Scheduling - WS 24/25 48 / 54

MULTILEVEL FEEDBACK SCHEDULING (2/2)MULTILEVEL FEEDBACK SCHEDULING (2/2)

Bene�t:

No complicated estimations!

New processes are quickly assigned to a

priority category

Prefers new processes over older

(longer-running) processes

Source: William Stallings. Operating Systems. 4th edition. Prentice Hall (2001). P.413

Processes with many I/O operations are preferred because they typically yield

when waiting for I/O

Older, longer-running processes are delayed

Many modern operating systems use variants of multilevel feedback scheduling for the scheduling of the processes.

Examples: Linux for regular processes (until Kernel 2.4), Mac OS X, FreeBSD, NetBSD, and the Windows NT family

Operating Systems - Scheduling - WS 24/25 49 / 54

COMPLETELY FAIR SCHEDULER (LINUX SINCECOMPLETELY FAIR SCHEDULER (LINUX SINCE
2.6.23)2.6.23)

If a process gets replaced from the CPU

core, the vruntime value is increased by

the time the process did run on the CPU

core

The nodes (processes) in the tree move

continuously from right to left

 fair distribution of CPU resources⟹

The scheduler takes into account the static process priorities (nice values) of

the processes

The vruntime values are weighted di�erently depending on the nice value

In other words: The virtual clock can run at di�erent speeds

Operating Systems - Scheduling - WS 24/25 50 / 54

CLASSIC AND MODERN SCHEDULING METHODSCLASSIC AND MODERN SCHEDULING METHODS
Scheduling Fair CPU time Takes priorities

NP P must be known into account

Priority-driven scheduling X X no no yes

First Come First Served = FIFO X yes no no

Last Come First Served X X no no no

Round Robin X yes no no

Shortest/Longest Job First X no yes no

Shortest Remaining Time First X no yes no

Longest Remaining Time First X no yes no

Highest Response Ratio Next X yes yes no

Earliest Deadline First X X yes no no

Static multilevel scheduling X no no yes (static)

Multilevel feedback scheduling X yes no yes (dynamic)

Completely Fair Scheduler X yes no yes

NP = non-preemptive scheduling, P = preemptive scheduling

A scheduling policy is fair when each process gets the CPU assigned at some point

It is impossible to calculate the execution time precisely in advance

Operating Systems - Scheduling - WS 24/25 51 / 54

LINUX’ SCHEDULING POLICIESLINUX’ SCHEDULING POLICIES

In Linux e.g., each process is assigned to a speci�c scheduling policy

For real-time processes…

SCHED_FIFO (priority-driven scheduling, non-preemptive)

SCHED_RR (preemptive)

SCHED_DEADLINE (EDF scheduling, preemptive)

For non real-time processes…

SCHED_OTHER (default Linux time-sharing scheduling) implemented as…

Multilevel Feedback Scheduling (until Kernel 2.4)

O(1) scheduler (Kernel 2.6.0 until 2.6.22)

Completely Fair Scheduler (since Kernel 2.6.23)

Operating Systems - Scheduling - WS 24/25 52 / 54

THE RIOT SCHEDULER – EXAMPLETHE RIOT SCHEDULER – EXAMPLE

Operating Systems - Scheduling - WS 24/25 53 / 54

SUMMARYSUMMARY
You should now be able to answer the following

questions:

What steps does the dispatcher need to carry out for

switching between processes?

What is scheduling?

How do preemptive scheduling and non-preemptive

scheduling work?

Explain the functioning of several common scheduling

methods?

How does scheduling in modern operating systems

works in detail?

Operating Systems - Scheduling - WS 24/25 54 / 54

