
OPERATING SYSTEMS
Process Interaction

Prof. Dr. Oliver Hahm

2024-12-19

Operating Systems - Process Interaction - WS 24/25

AGENDAAGENDA

Process Interaction

Inter-Processes Communication (IPC)

Process Synchronization

Process Cooperation

Operating Systems - Process Interaction - WS 24/25 2 / 52

COMPANY CONTACT EXCHANGECOMPANY CONTACT EXCHANGE

For whom? Students who are looking for a position for the practical phase

When: 15.01.2025 from 17:00 to 19:00

Where? HoST, Hungener Str. 6, Building B, Room 05

Procedure: 4 companies present their projects, followed by time for contact

and one-on-one discussions We were able to win the following companies for

the company contact exchange:

Cap Gemini

Coherent Mainz, DILAS Diodenlaser GmbH

Deutsche Bundesbank

FES Frankfurt

Questions? Answered by the Praxisreferat

Updates can be found on campUAS in the courses

Practical phase Computer Science and Computer Science - Mobile Applications

Operating Systems - Process Interaction - WS 24/25 3 / 52

https://campuas.frankfurt-university.de/course/view.php?id=2789

PROCESS INTERACTION

Operating Systems - Process Interaction - WS 24/25 4 / 52

Why do processes need to interact?

Operating Systems - Process Interaction - WS 24/25 5 / 52

INTERPROCESS COMMUNICATION (IPC)INTERPROCESS COMMUNICATION (IPC)

In many cases processes do not operate isolated on separated data

Processes will often…

call each other,

wait for each other, or

coordinate with each other

They must interact with each other

Important questions regarding interprocess communication (IPC):

How can a process transmit information to other processes?

How can multiple processes access shared resources?

Operating Systems - Process Interaction - WS 24/25 6 / 52

COMMUNICATING THREADSCOMMUNICATING THREADS

What about threads?

Essentially threads are facing the same problems and

challenges

However, the solutions can often be simpler because

threads operate in the same address space

Operating Systems - Process Interaction - WS 24/25 7 / 52

CRITICAL SECTIONSCRITICAL SECTIONS

If multiple processes access shared resources, i.e.,

common data, they contain critical sections

Only one process may enter this section at a time (it must be

protected against concurrent access)

It appears as an atomic operation to the outside

Uncritical sections: The processes do not access shared data or

carry out only read operations on shared data

The OS must provide mechanisms for mutual

exclusion

⇒

Operating Systems - Process Interaction - WS 24/25 8 / 52

RACE CONDITIONRACE CONDITION

If the process’ behaviour depends on the order of

multiple code paths, it is called a race condition

The result of a process depends on the order or timing of other

events

Frequent reason for bugs, which are hard to locate and fix

Problem: The occurrence of the symptoms depends

on different events

The symptoms may be different or disappear with each test run

Race conditions can be avoided with the semaphore

concept

Operating Systems - Process Interaction - WS 24/25 9 / 52

CRITICAL SECTIONS – EXAMPLE: PRINT SPOOLERCRITICAL SECTIONS – EXAMPLE: PRINT SPOOLER
Process X Process Y

next_free_slot = in; (Result: 16)

Process

switch

next_free_slot = in; (Result: 16)

Store record in next_free_slot; (Result: 16)

in = next_free_slot + 1; (Result: 17)

Process

switch

Store record in next_free_slot; (Result: 16)

in = next_free_slot + 1; (Result: 17)

The spooling directory is consistent

But the entry of process Y was overwritten

by process X and got lost

Such a situation is called race

condition

Operating Systems - Process Interaction - WS 24/25 10 / 52

COMMUNICATION VS. COOPERATIONCOMMUNICATION VS. COOPERATION

Interprocess communication has 2 aspects:

Functional aspect: communication and cooperation

Temporal aspect: synchronization

Communication and cooperation base on synchronization

Operating Systems - Process Interaction - WS 24/25 11 / 52

INTER-PROCESSES
COMMUNICATION (IPC)

Operating Systems - Process Interaction - WS 24/25 12 / 52

How can processes communicate?

Operating Systems - Process Interaction - WS 24/25 13 / 52

COMMUNICATION OF PROCESSESCOMMUNICATION OF PROCESSES

Types of IPC

Files

Signals/Flags

Shared Memory

Message Queues

Pipes

Sockets

Operating Systems - Process Interaction - WS 24/25 14 / 52

FILESFILES

A resource stored in the file system which can be accessed by multiple

processes

Linux

File descriptors represent file handles

Part of the POSIX API

Per default every process owns three file descriptors (stdin, stdout, and stderr)

File descriptors can be used for, e.g., reading, writing, seeking, or truncating a file

RIOT

Virtual File System (VFS) may be implemented by various backends

Not all IoT devices provide persistent memory

If available, persistent memory is often realized on flash memory wear leveling is required

→

→

Operating Systems - Process Interaction - WS 24/25 15 / 52

SIGNALS AND FLAGSSIGNALS AND FLAGS

Notify another process about the occurrence of an event

Linux

POSIX signals

Standardized messages to trigger a certain behaviour

The receiver process gets interrupted

If a signal is unhandled by the receiver, it will terminate

RIOT

Thread flags

The receiver needs to wait for a flag

Optional kernel feature

Notify threads of conditions in a race-free and allocation-less way

Operating Systems - Process Interaction - WS 24/25 16 / 52

SHARED MEMORYSHARED MEMORY

IPC via shared memory is also called memory-based communication

Shared memory segments are memory areas which can be accessed by

multiple processes

These memory areas are mapped in the address space of multiple processes

Coordination (synchronization) between the processes accessing the

shared memory is required

RIOT Since most microcontrollers do not provide a MMU all processes can

typically access all memory regions …

→

→

Operating Systems - Process Interaction - WS 24/25 17 / 52

SHARED MEMORY IN LINUX/UNIXSHARED MEMORY IN LINUX/UNIX

Linux/UNIX operating systems contain a shared memory table, which

contains information about the existing shared memory segments

This information includes: Start address in memory, size, owner (username and group) and

privileges

Shared memory objects are accessed similar to files

A shared memory segment is always

addressed via its index number in the shared

memory table

Advantage: A shared memory segment which

is not attached to a process is not erased by

the operating system automatically

When the operating system is rebooted, the shared memory segments and their contents are lost

Operating Systems - Process Interaction - WS 24/25 18 / 52

MESSAGE QUEUESMESSAGE QUEUES

Are linked lists with messages

Operate according to the FIFO principle

Processes can store data inside and picked them up from there

Benefit: Even after the termination of the process which created the message

queue the data inside the message queue stays available

Operating Systems - Process Interaction - WS 24/25 19 / 52

MESSAGE QUEUESMESSAGE QUEUES

Linux

POSIX and System V message queues

Queues are named and can be shared via this name between

processes

Message have priorities

RIOT

Kernel messages and mailboxes

Optional feature

Blocking and non-blocking API available

A thread may create a message buffer for queuing

Mailboxes can be accessed by multiple processes
Operating Systems - Process Interaction - WS 24/25 20 / 52

ANONYMOUS PIPESANONYMOUS PIPES

In Linux pipes are created with the system call pipe()

The kernel creates an inode and two file descriptors (handles)

Processes access the access identifiers with read() and write() system calls (or standard library functions)

similar to files

When child processes are created with fork(), the child processes also inherit access to the

file descriptors

Anonymous pipes allow process communication only between closely related processes

Only processes, which are closely related via fork() can communicate with each other via anonymous pipes

If the last process, which has access to an anonymous pipe, terminates, the pipe gets erased by the operating

system

Overview of the pipes in Linux/UNIX: lsof | grep pipe

⟶

Operating Systems - Process Interaction - WS 24/25 21 / 52

NAMED PIPESNAMED PIPES

Processes, which are not closely related with each other, can communicate via

named pipes

These pipes can be accessed by using their names

They are created in C by: mkfifo("<pathname>",<permissions>)

Any process, which knows the name of a pipe, can use the name to access the pipe and

communicate with other processes

The operating system ensures mutual exclusion

At any time, only a single process can access a pipe

Named pipes are not erased automatically by the operating system (unlike

anonymous pipes)

Operating Systems - Process Interaction - WS 24/25 22 / 52

DIFFERENT TYPES OF SOCKETSDIFFERENT TYPES OF SOCKETS

Connectionless sockets (= datagram sockets)

Use the Transport Layer protocol UDP

Advantage: Better data rate as with TCP

Reason: Lesser overhead for the protocol

Drawback: Segments may arrive in wrong sequence or may get lost

Connection-oriented sockets (= stream sockets)

Use the Transport Layer protocol TCP

Advantage: Better reliability

Segments cannot get lost

Segments always arrive in the correct sequence

Drawback: Lower data rate as with UDP

Reason: More overhead for the protocol

Operating Systems - Process Interaction - WS 24/25 23 / 52

USING SOCKETSUSING SOCKETS

Almost all major operating systems support sockets

Advantage: Better portability of applications

Functions for communication via sockets:

Creating a Socket:

socket()

Binding a socket to a port number and making it ready to receive data:

bind(), listen(), accept() and connect()

Sending/receiving messages via the socket:

send(), sendto(), recv() and recvfrom()

Closing of a socket:

shutdown() or close()

Overview of the sockets in Linux/UNIX: netstat -n or lsof | grep socket

Examples of Interprocess communication via sockets (TCP and UDP) in Linux can

be found on the website of this course

Operating Systems - Process Interaction - WS 24/25 24 / 52

CONNECTION-LESS SOCKETS (UDP)CONNECTION-LESS SOCKETS (UDP)

Client

Create socket (socket)

Send (sendto) and receive data

(recvfrom)

Close socket (close)

Server

Create socket (socket)

Bind socket to a port (bind)

Send (sendto) and receive data

(recvfrom)

Close socket (close)

Operating Systems - Process Interaction - WS 24/25 25 / 52

CONNECTION-ORIENTED SOCKETS (TCP)CONNECTION-ORIENTED SOCKETS (TCP)

Client

Create socket (socket)

Connect client with server socket (connect)

Send (send) and receive data (recv)

Close socket (close)

Server

Create socket (socket)

Bind socket to a port (bind)

Make socket ready to receive (listen)

Set up a queue for connection requests. Specifies

the number of connection requests, which can be

stored in the queue

Server accepts connections (accept)

Fetch the first connection request from the queue

Send (send) and receive data (recv)

Close socket (close)

Operating Systems - Process Interaction - WS 24/25 26 / 52

COMPARISON OF COMMUNICATION SYSTEMSCOMPARISON OF COMMUNICATION SYSTEMS
Shared Memory Message Queues (anon./named) Sockets

Pipes

Scheme Memory-based Message-based Stream-based Message-based

Bidirectional yes no no yes

Platform independent no no no yes

Processes relation required no no for anon. pipes no

Common address space required yes yes yes no

Bound to a process no on yes yes

Automatic synchronization no yes yes yes

Advantages of message-based communication versus memory-based

communication:

The operating system takes care about the synchronization of accesses comfortable

Can be used in distributed systems without a shared memory

Better portability of applications

Storage can be integrated via network connections

This allows memory-based communication between processes on different independent systems

The problem of synchronizing the accesses also exists here

⟹

Operating Systems - Process Interaction - WS 24/25 27 / 52

PROCESS
SYNCHRONIZATION

Operating Systems - Process Interaction - WS 24/25 28 / 52

What is required if process
 needs to process X

before process
 can do Y?

P
A

P
B

Operating Systems - Process Interaction - WS 24/25 29 / 52

SIGNALINGSIGNALING

Used to specify an execution order

Example: Section X of process must be executed before section Y of

process

The signal operation signals that process has finished section X

Perhaps, process must wait for the signal of process

PA

PB

PA

PB PA

Operating Systems - Process Interaction - WS 24/25 30 / 52

MOST SIMPLE FORM OF SIGNALING (BUSYMOST SIMPLE FORM OF SIGNALING (BUSY
WAITING)WAITING)

The figure shows busy waiting at the signal variable s

The signal variable can be located in a local file, for example

Drawback: CPU resources are wasted, because the wait operation occupies the processor at

regular intervals

This technique is also called spinlock or polling

What can be done if the order of execution is not important?

Operating Systems - Process Interaction - WS 24/25 31 / 52

LOCKINGLOCKING

In order to protect critical sections, i.e., no overlap in their execution, locking

can be used

In contrast to signaling the execution order is not specified

The necessary operations are lock and unlock

Example: Critical Sections X of process and Y of process PA PB

Operating Systems - Process Interaction - WS 24/25 32 / 52

DIFFERENCE BETWEEN SIGNALING AND LOCKINGDIFFERENCE BETWEEN SIGNALING AND LOCKING

Signaling specifies the execution order

Example: Execute section X of process before

section Y of

Locking secures critical sections

The execution order of the critical sections of the

processes is not specified! It is just ensured that the

execution of critical sections does not overlap

PA

PB

Operating Systems - Process Interaction - WS 24/25 33 / 52

What may go wrong?

Operating Systems - Process Interaction - WS 24/25 34 / 52

PROBLEMS CAUSED BY LOCKINGPROBLEMS CAUSED BY LOCKING

Starvation

If a process does never remove a lock, the other processes need to wait infinitely long for the

release

Deadlock

If several processes wait for resources, locked by each other, they lock each other mutually

Because all processes, which are involved in the deadlock, must wait forever, no one can

initiate an event that resolves the situation

Source:

(author and license: unknown)

https://i.redd.it/vvu6v8pxvue11.jpg

Operating Systems - Process Interaction - WS 24/25 35 / 52

https://i.redd.it/vvu6v8pxvue11.jpg

CONDITIONS FOR DEADLOCK OCCURRENCECONDITIONS FOR DEADLOCK OCCURRENCE

A deadlock situation can arise if these conditions are all fulfilled

Mutual exclusion

At least one resource is either occupied by exactly one process or is available non-sharable resource

Hold and wait

A process, which currently occupies at least one resource, requests additional resources which are being held by

another process

No preemption

Resources occupied by a process cannot be deallocated by the OS but only be released by the holding process

voluntarily

Circular wait

A cyclic chain of processes exists

Each process requests a resource that the next process in the chain occupies.

Only if all of these conditions are fulfilled a deadlock occurs

⟹

Operating Systems - Process Interaction - WS 24/25 36 / 52

DEADLOCK HANDLINGDEADLOCK HANDLING

Ignore it (Ostrich algorithm)

Detect and correct it:

Terminate one or more processes

Rollback a process

Preempt resource usage

Avoid it

→

Operating Systems - Process Interaction - WS 24/25 37 / 52

RESOURCE GRAPHSRESOURCE GRAPHS

The relations of processes and resources can be visualized using directed

graphs

In this way, deadlocks can also be modeled

The nodes of a resource graph are:

Processes: Are shown as circles

Resources: Are shown as rectangles

An edge from a process to a resource means:

The process is blocked because it waits for the resource

An edge from a resource to a process means:

The process occupies the resource

Operating Systems - Process Interaction - WS 24/25 38 / 52

DEADLOCK DETECTION WITH MATRICESDEADLOCK DETECTION WITH MATRICES
Limitations of deadlock detection with resource graphs

Only individual resources (i.e., no copies) can be represented

If multiple copies of a resource exist, an algorithm based on matrices can be

used

We specify two vectors

Existing resource vector

Indicates the number of existing resources of each class

Available resource vector

Indicates the number of free resources of each class

Additionally two matrices are required

Current allocation matrix

Indicates, which resources are currently occupied by the processes

Request matrix

Indicates, which resource the processes would like to occupy

Operating Systems - Process Interaction - WS 24/25 39 / 52

DEADLOCK DETECTION – EXAMPLEDEADLOCK DETECTION – EXAMPLE

If process 3 finished execution, it deallocates its resources

Two resources of class 1 are available

Two resources of class 2 are available

Two resources of class 3 are available

No resources of class 4 are available

Process 1 is blocked, because no free resources of class 4

exist

Process 2 is not blocked

If process 2 finished execution, it deallocates its resources

Process 1 is not blocked no deadlock in this example

Available resource vector = ()2 2 2 0
Request matrix =

⎡
⎣
⎢

2

1

−

0

0

−

0

1

−

1

0

−

⎤
⎦
⎥

Available resource vector = ()4 2 2 1
Request matrix =

⎡
⎣
⎢

2

−

−

0

−

−

0

−

−

1

−

−

⎤
⎦
⎥

⟹

Operating Systems - Process Interaction - WS 24/25 40 / 52

PROCESS COOPERATION

Operating Systems - Process Interaction - WS 24/25 41 / 52

COOPERATIONCOOPERATION

Cooperation

Semaphor

Mutex

Operating Systems - Process Interaction - WS 24/25 42 / 52

SEMAPHORESEMAPHORE

In order to protect (lock) critical sections not only the already discussed locks

can be used but also semaphores

First published in 1965 by Edsger W. Dijkstra

A semaphore is a counter lock S with operations P(S) and V(S)

V comes from the dutch verhogen = raise

P comes from the dutch proberen = try (to reduce)

These access operations are atomic can not be interrupted

May allow multiple processes accessing the critical section

Cooperating sequential processes. Edsger W. Dijkstra (1965)

⟹

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

Operating Systems - Process Interaction - WS 24/25 43 / 52

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

SEMAPHORE ACCESS OPERATIONS (1/3)SEMAPHORE ACCESS OPERATIONS (1/3)

A Semaphore consists of 2 Data Structures

COUNT: An integer, non-negative counter variable.

Specifies how many processes can pass the semaphore now without getting

blocked

A waiting room for the processes, which wait until they are allowed to pass the

semaphore

The processes are in blocked state until they are transferred into ready state by

the operating system when the semaphore allows to access the critical section

Initialization: First, a new semaphore is created or an existing one is opened

For a new semaphore, the counter variable is initialized at the beginning with a non-negative

initial value

// apply the INIT operation on semaphore SEM

SEM.INIT(unsigned int init_value) {

 // initialize the variable COUNT of Semaphor SEM

 // with a non-negative initial value

 SEM.COUNT = init_value;

}

Operating Systems - Process Interaction - WS 24/25 44 / 52

SEMAPHORE ACCESS OPERATIONS (2/3)SEMAPHORE ACCESS OPERATIONS (2/3)

P operation (reduce): It checks the value of the counter variable

If the value is 0, the process becomes blocked

If the value 0, it is reduced by 1

Image Source: Carsten Vogt

>

SEM.P() {

 // if the counter variable = 0, the process becomes blocked

 if (SEM.COUNT == 0)

 < block >

 // if the counter variable is > 0, the counter variable

 // is decremented immediately by 1

 SEM.COUNT = SEM.COUNT - 1;

}

Operating Systems - Process Interaction - WS 24/25 45 / 52

SEMAPHORE ACCESS OPERATIONS (3/3)SEMAPHORE ACCESS OPERATIONS (3/3)

V operation (raise): It first increases the counter variable by value 1

If processes are in the waiting room, one process gets unblocked

The process, which just got unblocked, continues its P operation and first reduces the counter

variable

Image Source: Carsten Vogt

SEM.V() {

 // counter variable = counter variable + 1

 SEM.COUNT = SEM.COUNT + 1;

 // if processes are in the waiting room, one gets unblocked

 if (< SEM waiting room is not empty >)

 < unblock a waiting process >

}

Operating Systems - Process Interaction - WS 24/25 46 / 52

PRODUCER/CONSUMER EXAMPLEPRODUCER/CONSUMER EXAMPLE

typedef int semaphore; // semaphores are of type integer1
semaphore filled = 0; // counts the number of occupied locations in the buffer2
semaphore empty = 8; // counts the number of empty locations in the buffer3
semaphore mutex = 1; // controls access to the critial sections4

5
void producer (void) {6
 int data;7
 while (TRUE) { // infinite loop8
 createDatapacket(data); // create data packet9
 P(empty); // decrement the empty locations counter10

 P(mutex); // enter the critical section11
 insertDatapacket(data); // write data packet into the buffer12
 V(mutex); // leave the critical section13
 V(filled); // increment the occupied locations counter14
 }15
}16

17

void consumer (void) {18
 int data;19
 while (TRUE) { // infinite loop20
 P(filled); // decrement the occupied locations counter21
 P(mutex); // enter the critical section22
 removeDatapacket(data); // pick data packet from the buffer23

 V(mutex); // leave the critical section24
 V(empty); // increment the empty locations counter25
 consumeDatapacket(data); // consume data packet26
 }27
} 28

Operating Systems - Process Interaction - WS 24/25 47 / 52

file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-09.html

SEMAPHORES IN LINUX (SYSTEM V)SEMAPHORES IN LINUX (SYSTEM V)

The semaphore concept of Linux differs from the Dijkstra concept

The counter variable can be incremented or decremented with a P or V operation by more

than value 1

Multiple access operations on different semaphores can be carried out in an atomic way

Linux systems maintain a semaphore

table, which contains references to

arrays of semaphores

Individual semaphores are addressed using

the table index and the position in the

group

Image Source: Carsten Vogt

Operating Systems - Process Interaction - WS 24/25 48 / 52

SYSTEMS CALLS FOR SYSTEM V SEMAPHORESSYSTEMS CALLS FOR SYSTEM V SEMAPHORES
Linux/UNIX operating systems provide three system calls for working with

System V semaphores

semget(): Create new semaphore or a group of semaphores or open an

existing semaphore

semctl(): Request or modify the value of an existing semaphore or of a

semaphore group or erase a semaphore

semop(): Carry out P and V operations on semaphores

Information about existing semaphores (System V) provides the command

ipcs

Operating Systems - Process Interaction - WS 24/25 49 / 52

MUTEXESMUTEXES

If the Semaphore feature of counting is not required a simplified alternative,

the mutex can be used instead

Mutexes (derived from Mutual Exclusion) are used to protect critical sections, which are

allowed to be accessed by only a single process at any given moment

Mutexes can only have two states: occupied and not occupied

Mutexes have the same functionality as binary semaphores

Several implementations of the mutex concept exist

C standard library: mtx_init, mtx_unlock (V operation), mtx_lock (P

operation), mtx_trylock, mtx_timedlock, mtx_destroy

POSIX threads: pthread_mutex_init, pthread_mutex_unlock,

pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_timedlock,

pthread_mutex_destroy

C standard library (Sun/Oracle Solaris): mutex_init, mutex_unlock,

mutex_lock, mutex_trylock, mutex_destroy

Operating Systems - Process Interaction - WS 24/25 50 / 52

MONITOR AND ERASE IPC OBJECTSMONITOR AND ERASE IPC OBJECTS

Information about existing System  V shared memory segments, System  V

message queues, and System  V semaphores provides the command ipcs

The easiest way to erase such shared memory segments, message queues

and semaphores from the command line is the command ipcrm

POSIX memory segments and POSIX semaphores can be inspected and

manually erased in the directory /dev/shm

POSIX message queues can be inspected and manually erased in the

directory /dev/mqueue

 ipcrm [-m shmid] [-q msqid] [-s semid]

 [-M shmkey] [-Q msgkey] [-S semkey]

Operating Systems - Process Interaction - WS 24/25 51 / 52

SUMMARYSUMMARY
You should now be able to answer the following

questions:

What are critical sections and race conditions?

What is synchronization?

How can critical sections be secured via blocking?

Which problems are described by (starvation and

deadlocks)?

How does deadlock detection with matrices work?

What are different options to implement

communication between processes?

How can critical sections be protected via

semaphores (and mutex)?

Operating Systems - Process Interaction - WS 24/25 52 / 52

