
Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 4

Exercise 1 (System Calls)

1. x86-CPUs contain 4 privilege levels ("rings") for processes. Mark in the dia-
gram (clearly visible!) the kernel mode and the user mode.

2. Which ring contains the kernel of the operating system?

3. Which ring contains the applications of the users?

4. Processes of which ring have full access to the hardware?

5. Name a reason for the differentiation between user mode and kernel mode.

Content: Topics of slide set 05 Page 1 of 7



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

6. What is a system call?

7. What is a context switch?

8. Name two reasons why user mode processes should not call system calls
directly.

9. What alternatives exist, if user mode processes should not call system calls
directly?

Exercise 2 (Processes)

1. Which three sorts of process context information stores the operating system?

2. Which process context information are not stored in the process control
block?

3. Why does the process control block not store all process context information?

4. List all information stored in the process control block of a RIOT process
(thread)? (Check at https://doc.riot-os.org/struct__thread.html))

Content: Topics of slide set 05 Page 2 of 7

https://doc.riot-os.org/struct__thread.html


Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

5. What is the task of the dispatcher?

6. What is the task of the scheduler?

7. The process state model with 2 states is the smallest possible process model.
Enter the names of the states in the diagram of the process state model with
2 states.

8. Does the process state model with 2 states make sense? Explain your answer
shortly.

9. Enter the names of the states in the diagram of the process state model with
6 states.

Content: Topics of slide set 05 Page 3 of 7



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

10. What is the task of the process table?

11. How many status lists for processes in blocked state manages the operating
system?

12. Describe the effect of calling the system call fork().

13. Describe the effect of calling the system call exec().

14. The three diagrams below show all existing ways of creating a new process.
Specify for each diagram, which system call(s) are required to implement the
illustrated way of process creation.

Content: Topics of slide set 05 Page 4 of 7



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

15. A parent process (PID = 75) with the characteristics, described in the table
below, creates a child process (PID = 198) by using the system call fork().
Enter the four missing values into the table.

Parent Process Child Process
PPID 72
PID 75 198
UID 18
Return value of fork()

16. Describe what init is and what its task is.

17. Name the differences of a child process from the parent process shortly after
its creation.

18. Describe the effect, when a parent process is terminated before the child
process.

19. Describe what data the Text Segment contains.

20. Describe what data the Heap contains.

Content: Topics of slide set 05 Page 5 of 7



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

21. Describe what data the Stack contains.

Content: Topics of slide set 05 Page 6 of 7



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 3 (Process States)

Implement a program that create new processes and turn them into zombies.

Check the information about the processes in the proc filesystem (−→ man 5 proc).

Exercise 4 (Forking Processes)

In this programming exercise you have to work with processes including forking,
executing other programs, and waiting for child processes.

In this assignment, you will write a little application to launch another program and
measure its CPU runtime.

Basic functionality when user executes your program mytime:

1. If no command line arguments are given, the program should print information
on how to call the program correctly.

2. When executed with at least one command line argument the first argument
should be interpreted as a program name. Your program should then execute
this program – as a separate process – and pass all remaining command line
arguments as arguments to the executed program.

3. For any executed program its return value and the CPU time of the process
in milliseconds should be printed.

4. You must create a Makefile such that when someone types make in your work-
ing directory it will compile the program with an output of mytime.

You will need the system commands fork, a version of exec, waitpid, and
clock_gettime to complete this task. For details on how to use these, you can
use UNIX’s man pages. There is also an online version at https://www.kernel.
org/doc/man-pages/.

Content: Topics of slide set 05 Page 7 of 7

https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/

	(System Calls)
	(Processes)
	(Process States)
	(Forking Processes)

