
Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 5

Exercise 1 (Interrupts)

1. What are interrupts?

2. What is the interrupt vector?

3. What are exceptions?

4. What happens, if during the handling of an interrupt, an additional interrupt
occurs?

Content: Topics of slide set 5-7 Page 1 of 3

Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 2 (Programs and Processes)

In this exercise you will investigate the content of a program and its memory layout
as a process.

1. Create a file that contains at least one C function but no main() function.
Create another file that contains a main() function which calls at least one of
the functions from the other file.
Compile both files using gcc, passing the parameters -g and -c. What do
these parameters do and what kind of files are created? Use the command nm
on these files and interpret the output.

2. Invoke the linker as follows:
gcc -Wl,–start-group file1.o file2.o -Wl,–end-group -g -o
<outputfile>
Use the tools ldd and nm on the resulting binary and understand the output.
Invoke the linker as before but additionally pass the parameter -static. Call
ldd and nm again and check the difference.

3. Debug the program using gdb. Use the gdb commands breakpoint, print,
and backtrace from the gdb CLI. What are the addresses of the variables and
functions in your program?
Hint: You can use the CLI command tui enable or invoke gdb with –tui
for an text user interface.

Exercise 3 (Building your own Kernel)

In this exercise you will build your own kernel and boot it in an emulator environ-
ment.

1. Install the required packages via your packet manager. On Debian Linux
(which is installed on the lab computers), you can use the following command:
sudo apt-get update && sudo apt-get install git build-essential
bc kmod cpio flex libncurses5-dev libelf-dev libssl-dev dwarves
bison initramfs-tools

2. Obtain the Linux kernel source code from the git repository via
git clone https//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

3. Create the default configuration via calling make defconfig (from within
the cloned kernel repository). Now edit the configuration by calling make
menuconfig. Append a custom string to the kernel version string and set the
default hostname to a custom value.

4. Build the kernel via make.
Hint: To speed up the process you can use the parameter -j to run multiple

Content: Topics of slide set 5-7 Page 2 of 3

Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

(compiler) jobs in parallel. The optimal value for the argument can be found
with the command nproc.

5. Create a ramdisk using the command mkinitramfs.

6. Install the emulator QEMU by calling:
sudo apt install qemu-utils qemu-system-x86 qemu-system-gui

7. Boot your custom kernel with your ram disk by calling:
qemu-system-x86_64 -kernel arch/x86_64/boot/bzImage -initrd
<path/to/your/ramdisk>
Check the kernel and host name using uname.

8. Create your own init program and spawn it from your kernel in the emula-
tor. Compile and link a static C program that ends with a long sleep, e.g., by
calling sleep(0xFFFFFFFF). Put the binary in an empty directory, change to
that directory, and call:
find . | cpio -o -H newc | gzip > rootfs.cpio.gz
Pass the generated rootfs.cpio.gz as a parameter to the qemu call (as an argu-
ment for -initrd).

Content: Topics of slide set 5-7 Page 3 of 3

	(Interrupts)
	(Programs and Processes)
	(Building your own Kernel)

