
IoT Project
Introduction

Prof. Dr. Oliver Hahm
Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 1/43

https://teaching.dahahm.de

Agenda

1 About

2 Organizational

3 Internet of Things

4 Software for low-end IoT Devices

5 Technical Insights on RIOT

6 RIOT Community

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 2/43

Agenda

1 About

2 Organizational

3 Internet of Things

4 Software for low-end IoT Devices

5 Technical Insights on RIOT

6 RIOT Community

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 3/43

About me

Study of Computer Science at
Freie Universität Berlin

Software Developer for ScatterWeb and
Zühlke Engineering

Research on IoT and Operating Systems

Contact

E-mail: oliver.hahm@fb2.fra-uas.de
Office hours: Tuesdays 13:00 – 14:00, room 1-212

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 4/43

Join the RIOT!

RIOT is the friendly
operating system
for the IoT!

You’re interested in . . .

. . . realize your own ideas for an IoT application?

. . . collaborate with hundreds of people from all
over the world?

. . . contribute to a big FLOSS project?

Get in touch

Get in touch and do some hacking at the All RIOT event
at the university!
Every two or three weeks in room 1-237.

Or look at https://riot-os.org/community.html

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 5/43

https://riot-os.org/community.html

What about you?

What is your motivatio
n

for this course?

What do you think about

the Internet of Things?

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 6/43

What about you?

What is your motivatio
n

for this course?

What do you think about

the Internet of Things?

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 6/43

Agenda

1 About

2 Organizational

3 Internet of Things

4 Software for low-end IoT Devices

5 Technical Insights on RIOT

6 RIOT Community

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 7/43

What?

Create a firmware based on RIOT (https://riot-os.org)

The firmware should periodically read sensor data and send it towards
an IoT Cloud provider

Sending data to the cloud requires . . .

IPv6 connectivity
a border router

Allow remote management and retrieval of sensor data

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 8/43

https://riot-os.org

How?

Team work (two students per group)

↪→ But grading is individually

Each team work on a common code base

git is used as version control system

Write documentation about your project

Run (and evaluate) your code on RIOT native and on real hardware

Present your work

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 9/43

What (and when) to Submit?

July 14, 2023: Presentation

Give a short presentation on your work (live demo?)

July 28, 2023: Submission

Final version of the code is in the repository
→ You have granted access to me

Send me your documentation

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 10/43

Evaluation

Which aspects of your work are going to be evaluated?

Your implementation (60%)

Functionality (20%)
Creativity (10%)
System and code architecture (10%)
Code quality (10%)
Infrastructure (10%)

The documentation (20%)

Inline code documentation (5%)
Final How-To (15%)

Your presentations (20%)

A small midterm presentation (5%)
The final presentation (15%)

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 11/43

Grading System

Definition of the Grades
1.0 This grade denotes an excellence performance. It is awarded if the work

evaluated is outstanding, flawless and near perfection. It exceeds the
expectations and is particularly witty.

2.0 This grade denotes a good performance. The work evaluated meets the
expectations and fulfills the requirements well. It may contain some minor or
formal errors.

3.0 This grade denotes a satisfying performance. The work evaluated meets most of
the expectations and fulfills the basic requirements. It contains some clear errors
that should be corrected.

4.0 This grade denotes a sufficient performance to pass the examination. The work
evaluated fulfills the bare minimum but significantly more. It contains several
clear errors that must be corrected.

5.0 This grade denotes an insufficient performance. The work evaluated does not
even fulfill the basic requirements and is not enough to pass the exam. It may
also be awarded in case of cheating or plagiarism.

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 12/43

Further Information

Course page

All material regarding this course can be found at
https://teaching.dahahm.de

This includes

Announcements

Slides

Dates

campUAS

Enrolment Key:
HahmProject

Additional Sources

Everything related to RIOT can be found at https://riot-os.org .

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 13/43

https://teaching.dahahm.de
https://riot-os.org

Agenda

1 About

2 Organizational

3 Internet of Things

4 Software for low-end IoT Devices

5 Technical Insights on RIOT

6 RIOT Community

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 14/43

The Evolution of the IoT

Three Disruptive Technologies
as the Roots of the IoT

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 15/43

The Evolution of the IoT

Three Disruptive Technologies
as the Roots of the IoT

Wireless Communication

Low-cost Embedded
Systems

The Internet

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 15/43

The Evolution of the IoT

Three Disruptive Technologies
as the Roots of the IoT

Wireless Communication

Low-cost Embedded
Systems

The Internet

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 15/43

The Evolution of the IoT

Three Disruptive Technologies
as the Roots of the IoT

Wireless Communication

Low-cost Embedded
Systems

The Internet

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 15/43

Smart Object Networking at Internet-Scale

Connecting the Physical World with the
Internet

Transforming Things into Smart Objects

Enabling Interconnected Smart Services

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 16/43

Smart Object Networking at Internet-Scale

Industrial Automation
Connecting the Physical World with the
Internet

Transforming Things into Smart Objects

Enabling Interconnected Smart Services

Mobile Health Micro & Nano Satellites Building & Home Automation

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 16/43

Use Case Requirements

Interoperability

Energy Efficiency

Reliability

Latency

Low Cost Factor

Autonomy

Security

Scalability

It ain’t smart if I have to charge it every day.Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 17/43

Agenda

1 About

2 Organizational

3 Internet of Things

4 Software for low-end IoT Devices

5 Technical Insights on RIOT

6 RIOT Community

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 18/43

Requirements for IoT Software
Low-end IoT Devices: Limited Resources (RFC7228)

iotlab-m3 Senslab

WSN430

Arduino Due

Memory < 1 Mb

CPU < 100 MHz

Energy < 10 Wh

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 19/43

Requirements for IoT Software
Low-end IoT Devices: Limited Resources (RFC7228)

iotlab-m3 Senslab

WSN430

Arduino Due

Memory < 1 Mb

CPU < 100 MHz

Energy < 10 Wh

+ Use Case Requirements

=

Software Requirements

Energy Efficiency

Sustainability

Network Connectivity

Real-Time Capabilities

Small Memory Footprint

Security and Safety

Support for Heterogeneous
Hardware

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 19/43

Embedded Operating Systems

No User Interaction

No GUI required ⇒ No
Pseudo-Parallel Execution is
required

Must Operate Autonomously
→ Must Recover from Errors

Autoconfiguration is required

Source: Embedded Lab, https://www.electronics-lab.com/

1Memory Management Unit
2Floating Point Unit
Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 20/43

Embedded Operating Systems

No User Interaction

No GUI required ⇒ No
Pseudo-Parallel Execution is
required

Must Operate Autonomously
→ Must Recover from Errors

Autoconfiguration is required

Constrained Hardware

Often no MMU1 and no
FPU2

Typically no Display or
Input Devices

In many cases no
Persistent Memory

Source: Embedded Lab, https://www.electronics-lab.com/

1Memory Management Unit
2Floating Point Unit
Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 20/43

Embedded Operating Systems

No User Interaction

No GUI required ⇒ No
Pseudo-Parallel Execution is
required

Must Operate Autonomously
→ Must Recover from Errors

Autoconfiguration is required

Constrained Hardware

Often no MMU1 and no
FPU2

Typically no Display or
Input Devices

In many cases no
Persistent Memory

Source: Embedded Lab, https://www.electronics-lab.com/

No Multi-User Support required

Often only one Application

Typically no dynamic linking → just
one statically linked binary

1Memory Management Unit
2Floating Point Unit
Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 20/43

The Need for an OS for Low-end IoT Devices

Unified Software Platform

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 21/43

The Need for an OS for Low-end IoT Devices

Unified Software Platform Open Source

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 21/43

Operating Systems for Low-End IoT Devices: Linux

Full-fledged OS Does not fit

Too Big

Requires a MMU

Not Targeted for Real-Time or
Low-Energy

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 22/43

Operating Systems for Low-End IoT Devices: Linux

Full-fledged OS

WSN OS

Does not fit

Too Big

Requires a MMU

Not Targeted for Real-Time or
Low-Energy

Too Complicated

Hard to Learn

No System Level Compatibility

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 22/43

Operating Systems for Low-End IoT Devices: Linux

Full-fledged OS

WSN OS

RTOS

Does not fit

Too Big

Requires a MMU

Not Targeted for Real-Time or
Low-Energy

Too Complicated

Hard to Learn

No System Level Compatibility

Too Minimalistic

No Built in Networking Support

No Common API

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 22/43

Agenda

1 About

2 Organizational

3 Internet of Things

4 Software for low-end IoT Devices

5 Technical Insights on RIOT

6 RIOT Community

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 23/43

The friendly OS for the IoT

"If your IoT device cannot run Linux, then use RIOT!"

RIOT requires only a few kB of RAM/ROM, and a small CPU

With RIOT, code once & run heterogeneous IoT hardware

8bit hardware (e.g. Arduino)
16bit hardware (e.g. MSP430)
32bit hardware (e.g. ARM Cortex-M, x86)

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 24/43

Open Standards, Open Source

Free, open source (LGPLv2.1) operating system for constrained IoT
devices

Write your code in ANSI-C or C++

Compliant with the most widely used POSIX features like pthreads and
sockets

No IoT hardware needed for development

Run & debug RIOT as native process in Linux

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 25/43

Programming Language and Guidelines

Important Programming Language Properties

No Overhead

Full Control over Memory Management

Direct Access to the Hardware

Binding to other Languages

Usability

Why C?

Ticks all the Boxes

Stable Specification

Widely Used → Tooling

Programming Guidelines

Follow a Structured and Procedural
Approach

Keep It Simple, Stupid (KISS)

No Dynamic Memory Allocation

Be Resource-aware

No Macro “Magic”

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 26/43

Architectural Overview
Closed & Open Source IoT Applications

RIOT

Closed

Device Drivers

Open

Device Drivers

Low-power MCU + Network Interface +

Sensors and Controllers

Network

Stack

System

Libraries
Third party

Libraries

Design Decisions

Efficient & Flexible Micro-Kernel

System Level Interoperability

Networking Interoperability
Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 27/43

The Structure

Application

Packages
System

Libraries
Networking

Kernel (Core) Driver

Low-level periphial drivers

CPU Board

Applications / Library

Driver

conn

OpenWSN ccn-lite gnrc

netdev2

gnrc_conn

netapi

gnrc_udp

netapi

gnrc_tcp

netapi netapi

gnrc_ipv6

netapi

netapi

gnrc_sixlowpan

netapi

gnrc_netdev2 gnrc_netdev2

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 28/43

Hardware Abstraction Layer (HAL)

Challenge: Support a Plethora of different Platforms

Different Processor Architectures
(8 bit, 16 bit, 32 bit . . .)

Microcontroller1Peripherals

Sensors and Actuators

Network Devices

Crypto Devices

. . .

Source: MikroElektronika, https://www.mikroe.com

Goal: Provide a Common API

Drivers for MCU Core

Drivers for MCU Peripherals

Device Drivers

Timer API

1MicroController Unit (MCU)
Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 29/43

Multi-Threading
Microkernel approach
→ But no Memory Protection
⇒ Stack Overflows are possible

Provides Standard Multi-Threading

Each Thread contains a (minimal) Thread
Control Block (TCB)

Low Memory Usage

On a Low-end IoT Device
(16-bit, 8 MHz):

Min. TCB: 8 bytes

Min. Stack Size: 96 bytes

Up to 16,000 Messages/s
(=
∧

10,000 Packets/s for
802.15.4)

Stack #0

Instructions

Stack #1

Stack #2

Literals & Static
Data

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 30/43

Boot Sequence
Linux Boot Sequence

Source: https://arkit.co.in/linux-boot-process-millionaire-guide/

RIOTBOOT

APPLICATION
MAIN

KERNEL INIT

RESET
IRQ

CPU & BOARD
INIT

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 31/43

Boot Sequence
Linux Boot Sequence

Source: https://arkit.co.in/linux-boot-process-millionaire-guide/

RIOT Boot Sequence

RIOTBOOT

APPLICATION
MAIN

KERNEL INIT

RESET
IRQ

CPU & BOARD
INIT

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 31/43

Scheduling

Preemptive

Threads have fixed Priorities

The Thread in the Run-Queue with the highest Priority will run

A Periodic System Tick requires Timers

A running Timer prevent the MCU to enter Deep
Sleep Modes

Periodic Wakeup waste Energy if there is nothing to
do

Accounting for Real-Time Requirements

All Data Structures in the Kernel have Static Size ⇒ All
Operations are O(1)

The Behavior of the Kernel is completely deterministic

Interrupt Handlers are a short as possible Source: Educación Física,

https://efsancristobalcartagena.blogspot.com

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 32/43

Thread States

A Thread can have one of the following States:

Stopped
Sleeping
Blocked
Running
Pending

The States Running and Pending

indicate that the Thread is on the
Run-Queue
⇒ The Thread is ready to run

It may be blocked waiting for
. . .

a mutex

a message to be received

a message to be sent

a response to a previous
message

a thread flag

an action in its mailbox

a condition variable

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 33/43

Scheduling example

B

Time

R RT1 - Priority 0 B B

T2 - Priority 4

R RT4 - Priority 9 P P

T3 - Priority 4

B B

P

P

S

P P

P = Pending
B = Blocked
S = Sleeping
R = Running

R RIDLE - Priority 15 PP P

B

A B C D F G H I JE

B

R

K

X Event

RR

R R

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 34/43

Application Programming Interface (API)

Application shall be independent
from the Hardware

Portable Operating System Interface
(POSIX) provides a common API
among OS

Not well suited for low-power IoT
Devices

Origins from the 1980’s
−→ Not very modern
Not tailored for constrained
Resources
→ But facilitates (initial) porting

A POSIX-like API for this Class of
Devices is missing so far

Unified API

Optional POSIX

RIOT

Closed

Device Drivers

Open

Device Drivers

Low-power MCU + Network Interface +

Sensors and Controllers

HAL

Network

Stack

System

Libraries

Closed & Open Source IoT Applications

Third party
Libraries

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 35/43

Modularity and Reusability

Specialized Applications require only a
Subset of the available Features

Fine-grained Modularity is required to
reduce the Binary Size

Kernel Features may be disabled (→ Even
Multi-Threading is optional)

Result: Low Porting Effort

Emulation support: RIOT as a Process

Third-Party Development Tools

Third-Party Library Packages

Diff Size

Package Overall Relative

libcoap 639 lines 6.3%
libfixmath 34 lines 0.2%
lwip 767 lines 1.3%
micro-ecc 14 lines 0.8%
relic 24 lines <0.1%

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 36/43

Memory Comparison

RIOT is as Small as Traditional WSN Operating Systems

Application ROM RAM

RIOT 2016.04 52,378 5,618

Contiki 3.0 51,562 5,530

TinyOS tinyos-main 40,574 6,812

Standard IoT IPv6 Networking Application

Code size comparison [Bytes] between RIOT, Contiki, and TinyOS.
Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 37/43

Review & Perspectives

IETF core WG

started

1991 2000 2002 2007 2013 2016 20192017

RFC4944

"6LoWPAN"

20051997

IEEE 802.11

"Wi-Fi" IEEE 802.15.4

2010

IoT Software in 2022

Most popular IoT OS are:

RIOT
Zephyr
AWS FreeRTOS

RIOT as the Linux for the IoT?

ongoing challenges: Cloud integration, security, software updates
Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 38/43

Agenda

1 About

2 Organizational

3 Internet of Things

4 Software for low-end IoT Devices

5 Technical Insights on RIOT

6 RIOT Community

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 39/43

10 Years of RIOT!

RIOT Open Source Development

More Than 43,000 Commits and More Than 16,000 Pull Requests

Over 1,900 forks on GitHub

More Than 330 Contributors

Support for More Than 250 Hardware Platforms

Over 2,000 Scientific Publications

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 40/43

Get in touch!
Get together at the yearly RIOT Summit:
https://summit.riot-os.org
↪→ This year at our university!
News: https://twitter.com/RIOT_OS and https://fosstodon.org/@RIOT_OS

For Developers and Users: https://forum.riot-os.org

Support & Discussions on Matrix: https://matrix.to/#/#riot-os:matrix.org

Get the Source Code and Contribute: https://github.com/RIOT-OS/RIOT

Show Cases: https://www.hackster.io/riot-os

Videos on YouTube: https://www.youtube.com/c/RIOT-IoT

Pics: https://www.flickr.com/people/142412063@N07/

Getting started with a tutorial on https://riot-os.github.io/riot-course/

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 41/43

https://summit.riot-os.org
https://twitter.com/RIOT_OS
https://fosstodon.org/@RIOT_OS
https://forum.riot-os.org
https://matrix.to/#/#riot-os:matrix.org
https://github.com/RIOT-OS/RIOT
https://www.hackster.io/riot-os
https://www.youtube.com/c/RIOT-IoT
https://www.flickr.com/people/142412063@N07/
https://riot-os.github.io/riot-course/

Literature
E. Baccelli et al. “RIOT: An open source operating system for

low-end embedded devices in the IoT,” IEEE Internet of Things

Journal, December 2018.

O. Hahm, “Enabling Energy Efficient Smart Object Networking

at Internet-Scale,” Ecole Polytechnique, December 2016.

O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating

Systems for Low-End Devices in the Internet of Things: a

Survey,” IEEE Internet of Things Journal, October 2016.

D. Lacamera, “Embedded Systems Architecture,” O’Reilly, May

2018.

Source: Pubs and Publications, https://i1.wp.com/www.blogs.hss.ed.ac.uk/pubs-and-publications/files/2016/10/books.jpg?fit=945

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 42/43

Any Ques

tions?

Prof. Dr. Oliver Hahm – IoT Project – Introduction – SS 23 43/43

	About
	Organizational
	Internet of Things
	Software for low-end IoT Devices
	Technical Insights on RIOT
	RIOT Community

