
PROJECT
Introduction

Prof. Dr. Oliver Hahm

2024-10-21

Project - Introduction - WS 24/25

AGENDAAGENDA

About

Organizational

Internet of Things

Software for low-end IoT Devices

Technical Insights on RIOT

RIOT Community

Project - Introduction - WS 24/25 2 / 52

ABOUT

Project - Introduction - WS 24/25 3 / 52

ABOUTABOUT

Project - Introduction - WS 24/25 4 / 52

PROF. DR. OLIVER HAHMPROF. DR. OLIVER HAHM

Study of Computer Science at

Freie Universität Berlin

Software Developer for ScatterWeb

and Zühlke Engineering

Research on IoT and Operating

Systems

Contact

E-mail: oliver.hahm@fb2.fra-uas.de

Appointments: via e-mail, room 1-212

Project - Introduction - WS 24/25 5 / 52

JOIN THE RIOT!JOIN THE RIOT!

RIOT is the friendly operating

system for the IoT!
You’re interested in …

…programming the IoT?

…collaborate with hundreds of people from

all over the world?

…contribute to a big FLOSS project?

Get in touch and do some hacking at the All RIOT event

at the university! Usually every second Wednesday at

2pm in room 1-237.

First meeting: November 06, 2024.

All information on https://allriot.dahahm.de

Project - Introduction - WS 24/25 6 / 52

https://allriot.dahahm.de/

WHAT ABOUT YOU?WHAT ABOUT YOU?

What is your motivation for this course?

What do you think about the Internet of Things?

Project - Introduction - WS 24/25 7 / 52

ORGANIZATIONAL

Project - Introduction - WS 24/25 8 / 52

WHY?WHY?

Let’s pretend you are an IT service provider

I am your customer

You have to…

collect the requirements,

survey the solution space,

propose a viable system architecture,

implement a walking skeleton,

develop an MVP1,

document your project, and

work as a team.

Think about the software development model you want to use!

1. Minimum Viable Product

Project - Introduction - WS 24/25 9 / 52

WHAT?WHAT?

Develop an application for a constrained IoT device

Enable remote access to the application via an Instant

Messenger (WhatsApp, Telegram, Signal…)

Remote access should allow for…

Reading sensor values

Change settings

Remote access requires…

IPv6 connectivity

a border router

potentially an Internet service as a gateway

Project - Introduction - WS 24/25 10 / 52

HOW?HOW?

Team work (two students per group)

 But grading is individually

Each team work on a common code base

git is used as version control system

Develop the software

Create a firmware based on RIOT ()

To run additional services you can use AWS ()

 Please send me an to get an invitation

Write documentation about your project

Run (and evaluate) your code on RIOT native and on real hardware

Present your work

↪

https://riot-os.org

https://www.awsacademy.com

⇒ email

Project - Introduction - WS 24/25 11 / 52

https://riot-os.org/
https://www.awsacademy.com/
mailto:oliver.hahm@fb2.fra-uas.de

WHEN?WHEN?

November 25, 2024: Submission and presentation of your architecture

January 20, 2025: Present your walking skeleton (incl. demo)

February 10, 2025: Presentation

Give a short presentation on your work (live demo?)

February 21, 2025: Submission

Final version of the code is in the repository

You have granted access to me

Send me your documentation

Project - Introduction - WS 24/25 12 / 52

REQUIRED PRIOR KNOWLEDGEREQUIRED PRIOR KNOWLEDGE

For successful participation the knowledge from

multiple courses is required, e.g., …

Software Engineering

Computer Networks

Operating Systems

Embedded/Real-Time Systems

Distributed Systems

Project - Introduction - WS 24/25 13 / 52

EVALUATIONEVALUATION
Which aspects of your work are going to be evaluated?

Your implementation (50%)

Functionality (20%)

Creativity (10%)

System and code architecture (10%)

Code quality (5%)

Infrastructure (5%)

The documentation (25%)

Inline code documentation (5%)

Final How-To (20%)

Your presentations (25%)

Architecture presentation (5%)

Walking Skeleton presentation (10%)

The final presentation (10%)

Project - Introduction - WS 24/25 14 / 52

GRADING SYSTEMGRADING SYSTEM
Definition of the Grades

1.0

An excellence performance. It is awarded if the work evaluated is outstanding, flawless and

near perfection. It exceeds the expectations and is particularly witty.

2.0

A good performance. The work evaluated meets the expectations and fulfills the requirements

well. It may contain some minor or formal errors.

3.0

A satisfying performance. The work evaluated meets most of the expectations and fulfills the

basic requirements. It contains some clear errors that should be corrected.

4.0

A sufficient performance to pass the examination. The work evaluated fulfills the bare minimum

but significantly more. It contains several clear errors that must be corrected.

5.0

An insufficient performance. The work evaluated does not even fulfill the basic requirements

and is not enough to pass the exam. It may also be awarded in case of cheating or plagiarism.

Project - Introduction - WS 24/25 15 / 52

HOW TO GET AN 1.0?HOW TO GET AN 1.0?

Basic functional requirements are fulfilled

One of the following additional requirements are addressed

enhanced security, e.g.,…

end-to-end encryption

link layer security

authentication

additional features, e.g., support…

multiple IMs

multiple radio technologies

IPv4 and IPv6

additional sensors or actuators

improved efficiency, e.g.,…

reduced energy consumption

reduced memory footprint

no or only minimal cloud services required

Project - Introduction - WS 24/25 16 / 52

RECOMMENDED PROCEDURERECOMMENDED PROCEDURE

Prepare your workstation

Research on tools and protocols

Familiarize yourself w/ RIOT and AWS

Design your architecture

Build a firmware w/ basic connectivity

Use shell commands for interaction

Implement a walking skeleton

Refine and extend

Automate setup

Continuously document everything!

Project - Introduction - WS 24/25 17 / 52

FURTHER INFORMATIONFURTHER INFORMATION

All material regarding this course can be found at

This includes

Announcements

Slides

Dates

https://teaching.dahahm.de

Project - Introduction - WS 24/25 18 / 52

https://teaching.dahahm.de/

INTERNET OF THINGS

Project - Introduction - WS 24/25 19 / 52

THE EVOLUTION OF THE IOTTHE EVOLUTION OF THE IOT

Three Disruptive Technologies as the Roots of the IoT

Wireless Communication

Low-cost Embedded Systems

The Internet

Project - Introduction - WS 24/25 20 / 52

SMART OBJECT NETWORKING AT INTERNET-SMART OBJECT NETWORKING AT INTERNET-

SCALESCALE
Connecting the Physical World with the Internet

Transforming Things into Smart Objects

Enabling Interconnected Smart Services

Building & Home Automation

Industrial Automation

Mobile Health

Micro & Nano Satellites

Project - Introduction - WS 24/25 21 / 52

USE CASE REQUIREMENTSUSE CASE REQUIREMENTS

Interoperability

Energy Efficiency

Reliability

Latency

Low Cost Factor

Autonomy

Security

Scalability

It ain’t smart if I have to charge it every day.

Project - Introduction - WS 24/25 22 / 52

SOFTWARE FOR LOW-

END IOT DEVICES

Project - Introduction - WS 24/25 23 / 52

CONSTRAINTS AND REQUIREMENTSCONSTRAINTS AND REQUIREMENTS
Low-end IoT Devices: Limited Resources (RFC7228)
Arduino Due Raspberry Pi Pico nRF52840 Dongle

Memory < 1 Mb

CPU < 100 MHz

Energy < 10 Wh

+ Use Case Requirements

Software Requirements

Energy Efficiency

Sustainability

Network Connectivity

Real-time Capabilities

Small Memory FootprintLow Cost

Factor

Security and Safety

Support for Heterogeneous Hardware

Project - Introduction - WS 24/25 24 / 52

EMBEDDED OPERATING SYSTEMSEMBEDDED OPERATING SYSTEMS
No user interaction

No GUI required No Pseudo-

Parallel Execution is required

Must Operate Autonomously Must

Recover from Errors

Autoconfiguration is required

Constrained Hardware

Often no MMU1 and no FPU2

Typically no Display or Input Devices

In many cases no Persistent Memory

No Multi-User Support required

Often only one Application

Typically no dynamic linking just one

statically linked binary

⇒

→

→

1. Memory Management Unit

2. Floating Point Unit

Project - Introduction - WS 24/25 25 / 52

AN OS FOR LOW-END IOT DEVICESAN OS FOR LOW-END IOT DEVICES

Unified Software Platform Open Source

Project - Introduction - WS 24/25 26 / 52

OPERATING SYSTEMS FOR LOW-END IOT DEVICESOPERATING SYSTEMS FOR LOW-END IOT DEVICES
Full-fledged OS Does not fit

Too Big

Requires a MMU

Not Targeted for Real-Time or Low-Energy

WSN OS Too complicated

Hard to Learn

No System Level Compatibility

RTOS Too Minimalistic

No Built in Networking Support

No Common API

Project - Introduction - WS 24/25 27 / 52

TECHNICAL INSIGHTS ON

RIOT

Project - Introduction - WS 24/25 28 / 52

RIOT FACTSRIOT FACTS

Project - Introduction - WS 24/25 29 / 52

THE FRIENDLY OS FOR THE IOTTHE FRIENDLY OS FOR THE IOT

"If your IoT device cannot run Linux, then use RIOT!"

RIOT requires only a few kB of RAM/ROM, and a small CPU

With RIOT, code once & run heterogeneous IoT hardware

8bit hardware (e.g. Arduino)

16bit hardware (e.g. MSP430)

32bit hardware (e.g. ARM Cortex-M, x86)

Project - Introduction - WS 24/25 30 / 52

OPEN STANDARDS, OPEN SOURCEOPEN STANDARDS, OPEN SOURCE

Free, open source (LGPLv2.1) operating system for constrained IoT

devices

Write your code in ANSI-C or C++

Compliant with the most widely used POSIX features like pthreads

and sockets

No IoT hardware needed for development

Run & debug RIOT as native process in Linux

GDB - The GNU Debugger

Project - Introduction - WS 24/25 31 / 52

PROGRAMMING LANGUAGE AND GUIDELINESPROGRAMMING LANGUAGE AND GUIDELINES
Important Programming Language Properties

No Overhead

Full Control over Memory Management

Direct Access to the Hardware

Binding to other Languages

Usability

Why C?

Ticks all the Boxes

Stable Specification

Widely Used Tooling

Programming Guidelines

Follow a Structured and Procedural Approach

Keep It Simple, Stupid (KISS)

No Dynamic Memory Allocation

Be Resource-aware

No Macro “Magic”

→

Project - Introduction - WS 24/25 32 / 52

RIOT ARCHITECTURERIOT ARCHITECTURE

Project - Introduction - WS 24/25 33 / 52

ARCHITECTURAL OVERVIEWARCHITECTURAL OVERVIEW

Design Decisions

Efficient & Flexible Micro-Kernel

System Level Interoperability

Networking Interoperability

Project - Introduction - WS 24/25 34 / 52

THE STRUCTURETHE STRUCTURE

Project - Introduction - WS 24/25 35 / 52

CONCEPTSCONCEPTS

Project - Introduction - WS 24/25 36 / 52

HARDWARE ABSTRACTION LAYER (HAL)HARDWARE ABSTRACTION LAYER (HAL)
Challenge: Support a Plethora of different Platforms

Different Processor Architectures

(8 bit, 16 bit, 32 bit …)

MicrocontrollerPeripherals

Sensors and Actuators

Network Devices

Crypto Devices

…

Goal: Provide a Common API

Drivers for MCU Core

Drivers for MCU Peripherals

Device Drivers

Timer API

Source: MikroElektronika, https://www.mikroe.com

Project - Introduction - WS 24/25 37 / 52

MULTI-THREADINGMULTI-THREADING

Microkernel approach

 But no Memory Protection

 Stack Overflows are possible

Provides Standard Multi-Threading

Each Thread contains a (minimal) Thread

Control Block (TCB)

Low Memory Usage

On a Low-end IoT Device

(16-bit, 8 MHz):

Min. TCB: 8 bytes

Min. Stack Size: 96 bytes

Up to 16,000 Messages/s

(≙ 10,000 Packets/s for 802.15.4)

→

⇒

Project - Introduction - WS 24/25 38 / 52

BOOT SEQUENCEBOOT SEQUENCE

Linux Boot Sequence

Source: https://arkit.co.in/linux-boot-process-millionaire-guide/

RIOT Boot Sequence

Project - Introduction - WS 24/25 39 / 52

SCHEDULINGSCHEDULING

Preemptive

Threads have fixed Priorities

The Thread in the Run-Queue with the highest Priority will run

A Periodic System Tick requires Timers

A running Timer prevent the MCU to enter Deep Sleep

Modes

Periodic Wakeup waste Energy if there is nothing to do

Accounting for Real-Time Requirements

All Data Structures in the Kernel have Static Size All Operations

are O(1)

The Behavior of the Kernel is completely deterministic

Interrupt Handlers are a short as possible

Source: Educación Física,

https://efsancristobalcartagena.blogspot.com

⇒

Project - Introduction - WS 24/25 40 / 52

THREAD STATESTHREAD STATES

A Thread can have one of the following States:

Stopped

Sleeping

Blocked

Running

Pending

The States Running and Pending

indicate that the Thread is on the

Run-Queue

 The Thread is ready to run

It may be blocked waiting

for …

a mutex

a message to be received

a message to be sent

a response to a previous

message

a thread flag

an action in its mailbox

a condition variable

⇒

Project - Introduction - WS 24/25 41 / 52

SCHEDULING EXAMPLESCHEDULING EXAMPLE

Project - Introduction - WS 24/25 42 / 52

APPLICATION PROGRAMMING INTERFACE (API)APPLICATION PROGRAMMING INTERFACE (API)

Application shall be independent

from the Hardware

Portable Operating System Interface

(POSIX) provides a common API

among OS

Not well suited for low-power IoT

Devices

Origins from the 1980’s

 Not very modern

Not tailored for constrained Resources

 But facilitates (initial) porting

A POSIX-like API for this Class of

Devices is missing so far

⟶

→

Project - Introduction - WS 24/25 43 / 52

MODULARITY AND REUSABILITYMODULARITY AND REUSABILITY

Specialized Applications require only a Subset

of the available Features

Fine-grained Modularity is required to reduce

the Binary Size

Kernel Features may be disabled (Even

Multi-Threading is optional)

Result: Low Porting Effort

Emulation support: RIOT as a Process

Third-Party Development Tools

Third-Party Library Packages

Diff Size

Package Overall Relative

libcoap 639 lines 6.3 %

libfixmath 34 lines 0.2 %

lwip 767 lines 1.3 %

micro-ecc 14 lines 0.8 %

relic 24 lines 0.1 %

→

<

Project - Introduction - WS 24/25 44 / 52

MEMORY COMPARISONMEMORY COMPARISON
RIOT is as small as traditional WSN Operating

Systems

Application ROM RAM

RIOT 2024.07 42,341 6,0101

Contiki 3.0 51,562 5,530

TinyOS tinyos-main 40,574 6,812
Standard IoT IPv6 Networking Application

Code size comparison [Bytes] between RIOT, Contiki, and

TinyOS.

1. Can be reduced for smaller MTUs.

Project - Introduction - WS 24/25 45 / 52

REVIEW & PERSPECTIVESREVIEW & PERSPECTIVES

IoT Software in 2024

Most popular IoT OS are:

RIOT

Zephyr

AWS FreeRTOS

RIOT as the Linux for the IoT?

ongoing challenges: Cloud integration, security, software updates

Project - Introduction - WS 24/25 46 / 52

RIOT COMMUNITY

Project - Introduction - WS 24/25 47 / 52

10 YEARS OF RIOT!10 YEARS OF RIOT!
RIOT Open Source Development

More Than 43,000 Commits and More Than 16,000 Pull Requests

Over 1,900 forks on GitHub

More Than 330 Contributors

Support for More Than 250 Hardware Platforms

Over 2,000 Scientific Publications

Project - Introduction - WS 24/25 48 / 52

GET IN TOUCH!GET IN TOUCH!
Get together at the yearly RIOT Summit:

News: and

For Developers and Users:

Support & Discussions on Matrix:

Get the Source Code and Contribute:

Show Cases:

Videos on YouTube:

Pics:

Getting started with a tutorial on

https://twitter.com/RIOT_OS https://fosstodon.org/@RIOT_OS

https://forum.riot-os.org

https://matrix.to/#/#riot-os:matrix.org

https://github.com/RIOT-OS/RIOT

https://www.hackster.io/riot-os

https://www.youtube.com/c/RIOT-IoT

https://www.flickr.com/people/142412063@N07/

https://riot-os.github.io/riot-course/

Project - Introduction - WS 24/25 49 / 52

https://twitter.com/RIOT_OS
https://fosstodon.org/@RIOT_OS
https://forum.riot-os.org/
https://matrix.to/#/#riot-os:matrix.org
https://github.com/RIOT-OS/RIOT
https://www.hackster.io/riot-os
https://www.youtube.com/c/RIOT-IoT
https://www.flickr.com/people/142412063@N07/
https://riot-os.github.io/riot-course/

LITERATURELITERATURE

E. Baccelli et al. “RIOT: An open source operating system for

low-end embedded devices in the IoT,” IEEE Internet of Things

Journal, December 2018.

O. Hahm, “Enabling Energy Efficient Smart Object Networking at

Internet-Scale,” Ecole Polytechnique, December 2016.

O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating

Systems for Low-End Devices in the Internet of Things: a Survey,”

IEEE Internet of Things Journal, October 2016.

D. Lacamera, “Embedded Systems Architecture,” O’Reilly, May

2018.

Project - Introduction - WS 24/25 50 / 52

Any Questions?

Project - Introduction - WS 24/25 51 / 52

LET’S GET STARTEDLET’S GET STARTED

Go to !https://doc.riot-os.org/getting-started.html

Project - Introduction - WS 24/25 52 / 52

https://doc.riot-os.org/getting-started.html

